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Preface

It’s a great pleasure for me to present to you this work, a study and investigation of
the motion of masses and inertias relatively to one another and the conditions for
dynamic balance. I have tried to observe dynamic balance from a fundamental point
of view, to gain the insight and understanding that is needed when synthesizing a
mechanism device for a certain purpose, from improving the performance of high-
speed machinery to realizing safe and energy efficient large motion of objects. The
way masses and inertias move relatively can be regarded a kinematical issue and
dynamic balance therefore can be considered as specific kinematics of masses and
inertia, i.e. the study of mechanism kinematics that are scaled by the mass, the mass
distribution, and the mass location of each mechanism element.

My main motivation for this work has been, in addition to pleasing my passion
for mechanism motion and manipulating mathematical equations, to find a meth-
odology where dynamic balance is considered in the very beginning of the design
process. Commonly the question of dynamic balance is raised not until the design
of a machine or device is already completed, or when a machine or device is al-
ready operating and it is discovered that its performance is severely limited due to
dynamic unbalance. Unfortunately, then it is often too late and hardly possible to
apply a dynamic balance solution successfully. This work aims at a paradigm shift
in machine design where the importance of dynamic balance is understood and is
addressed as a design principle.

I have tried to make this work accessible to a diverse audience by clearly struc-
tured explanations that are understandable for anyone with basic mathematical and
physical knowledge. I have exerted all effort in illustrations for a realistic impression
of the outcomes and possibilities, which allow the designer to start directly without
the need of understanding the theory. I have developed prototype mechanisms and
provided experimental results to demonstrate the potential of dynamic balance in
practice. Unfortunately, or fortunately, this study is far from complete and has led
to many new questions. I hope to be able to continue this study on dynamic balance
in the years to come, not only on my own but with anyone, either from academia,
from industry, or from elsewhere, who becomes enthusiastic about this energizing
topic in mechanism design.
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Chapter 1
Introduction

1.1 Principles of shaking force and shaking moment balance

The problem of action is its reaction. In high-speed machinery such as robotic ma-
nipulators (Fig. 1.1), high action forces and moments are generated for fast acceler-
ation of the moving elements. As a reaction, high inertia forces and inertia torques
are generated that act on the moving elements and on the base of the machine. While
dynamic reactions are required for the dynamics of a machine, when the base is con-
sidered they are often a cause of significant undesired vibrations [64, 70, 74]. This
is illustrated in Fig. 1.2a and Fig. 1.2b where the dynamic reactions exerted by the
manipulator make the base of the machine vibrate.

Fig. 1.1 To mount high-speed robotic manipulators, heavy supports with large footprints are re-
quired to resist the high shaking forces and shaking moments in the base. (ABB Flexpicker Delta
robot)

1



2 1 Introduction

Of a machine or mechanism in motion, the resultant inertia force it exerts on
its base is named the shaking force and the resultant inertia torque it exerts on its
base is named the shaking moment. It is possible to design a mechanism such that
the resultant inertia force on the base is zero for which it is shaking force balanced
or, in short, force balanced. It is also possible to design a mechanism such that the
resultant inertia torque on the base is zero for which it is shaking moment balanced
or, in short, moment balanced. A mechanism is named dynamically balanced when
it is both force and moment balanced.

As opposed to damping, sophisticated control, or increased base mass to reduce
the influence of base vibrations, dynamic balancing has the purpose to eliminate
the vibrations at its source: by designing the machine such that it does not exert
vibrations of the base at all. This is illustrated in Fig. 1.2c where the inertia forces
and the inertia torques remain solely inside the mechanism. A dynamically balanced
machine then needs minimal support, hypothetically solely a single wire as reaction
to gravity as shown in Fig. 1.2d, without losing the ability to operate at high speeds
with high accuracies and without affecting the environment such as the floor, other
parts of the system mounted on the same base, and other systems.

The principles of dynamic balance are obtained from classical mechanics and can
already be found in Newton’s corollaries about the state of the common center of
mass (center of gravity) and the momentum (quantity of motion) in The Principia1:

The common center of gravity of two or more bodies does not change its state whether of
motion or of rest as a result of the actions of the bodies upon one another; and therefore the
common center of gravity of all bodies acting upon one another (excluding external actions
and impediments) either is at rest or moves uniformly straight forward.

The quantity of motion, which is determined by adding the motions made in one direction
and subtracting the motions made in the opposite direction, is not changed by the action of
bodies on one another.

(d)(c)(a) (b)

base

manipulator

base
link

Fig. 1.2 (a) An unbalanced manipulator (b) generates dynamic reactions to the base (c) which are
eliminated with dynamic balancing. (d) A balanced manipulator requires minimal support, e.g. by
a single wire, while having the ability to operate at high speeds with high accuracies and without
affecting the environment, other parts of the system, and other systems.

1 Isaac Newton - The Principia, Cohen and Whitman, 1999, University of California press
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With the base considered fixed in the inertial reference frame, the common center
of mass (CoM) of a system of moving elements can only accelerate because of
forces that interact between the system and the base. This means that when the
common CoM is stationary or moves with constant velocity relative to the base,
these forces are zero and the system is force balanced. Although a constant velocity
of the common CoM of a mechanism is not impossible [96], usually the common
CoM of a force-balanced mechanism is stationary with respect to the base.

When there are no forces or moments interacting between a system of moving
elements and the base, then the linear momentum and the angular momentum of
the system are constant for all relative motion. This is the general characteristic of a
dynamically balanced mechanism, it has a constant linear momentum and a constant
angular momentum with respect to the base for all motion of the mechanism.

Often the base is part of the mechanism, for instance in Fig. 1.2a where the mech-
anism element that is rigidly mounted on the base is regarded the base link. Internal
forces and internal moments that act among the moving elements and determine the
motion of the mechanism therefore also act within the base link. Internal forces and
moments include the inertia forces and inertia torques of the individual elements,
forces and moments of actuators (driving forces and torques), friction (in linkage
or fulcrum), internal collisions (between mechanism links or base link), internal
springs (between moving links or base link), and other. Since the momentum of a
system of moving elements does not depend on any internal force and moment -
their reactions are internal too -, they do not affect the dynamic balance. The sums
of all internal forces and moments on the base link therefore are zero.

The methods for deriving the conditions for dynamic balance of a mechanism are
based on these principles and are either focussed on (1) calculation of the forces and
moments on the base link and the conditions for which their sums are zero [90], (2)
determination of the common CoM and the conditions for which it is stationary (for
force balance only) [13], and (3) calculation of the linear and angular momentum
and the conditions for which they are constant [67].

Because a dynamically balanced mechanism is dynamically decoupled from its
base, dynamic behavior of the base does not affect the relative motion of the mech-
anism. When the base is accelerated linearly or rotationally, e.g. by another device
or due to external vibrations, a dynamically balanced mechanism behaves as a sin-
gle rigid body with the base. This is also the reason that the gravity force does not
affect the relative motion of the elements of a force-balanced mechanism. Although
the gravity force works on all elements, since the common CoM of the elements
is a stationary point within the base, effectively the gravity force only affects the
accelerations of the base and the mechanism as a rigid body.

To stress the difference between shaking force balance and static balance, the
latter can be achieved also by maintaining the potential energy of the mechanism
constant, for instance by using springs [60]. This means that shaking force bal-
ance solutions are a subset of static balance solutions, i.e. shaking-force-balanced
mechanisms are statically balanced too. However, since shaking forces are essen-
tially different from static forces, the terms shaking force balance and static balance
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should not be confused. Here force balance or shaking force balance will be used,
and the term static balance will be reserved for constant potential energy balancing.

1.2 Applications of dynamic balance

There are numerous advantages for which dynamic balance is applied to improve
the performance of a machine. For instance, dynamically balanced mechanisms are
known to have reduced noise [39] and reduced wear and fatigue [74]. In telescopes
dynamic balance is important for moving the mirrors accurately at high frequen-
cies [57]. In robotics, dynamic balance reduces cycle times and improves precision.
Because of reduced waiting time for vibrations to die out, the settling time of a
dynamically balanced two-degree-of-freedom parallel manipulator was shown to
reduce with a factor 16 as compared to the unbalanced case [75, 83]. In this section
a range of applications is highlighted with selected examples.

ASML’s Twinscan lithographic system, shown in Fig. 1.3, is an example in which
dynamic balance is applied for low cycle times with high precision with the aim to
lower the costs per product by increasing the output rate [36, 70]. Any vibration of
the base is undesired for accurate measurements by sensitive metrology tools that
are mounted on the same base and to keep the costs of solutions to damp vibra-
tions low [82]. This machine has moving stages for positioning wafers in the lower
part and for positioning reticles in the upper part. The moving stages are acceler-
ated by interaction with a balance mass as illustrated in Fig. 1.4a. Both the stage

Fig. 1.3 AMSL Twinscan XT:1000H, a 248-nm step and scan lithographic system with balanced
moving stages for low cycle times and high precision. (www.asml.com, 2014)
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and the balance mass float within the horizontal plane with the actuator in between
moving them in opposite directions continuously. Then the dynamic forces remain
internal and the base does not experience shaking forces. Also the forces from the
spring-damper device are internal when compensating the friction forces between
the balance mass and the base.

In the upper part of the Twinscan the moving stage is in the same plane as the
balance mass as shown in Fig. 1.4b such that full dynamic balance is obtained.
Figure 1.4c shows the two stages in the lower part of the machine which float on
top of the balance mass. Although they are force balanced, since the stages are in
a different plane from the balance mass the dynamic forces still produce shaking
moments in the base.

The ABB IRB760 palletizer shown in Fig. 1.5 is a shaking force balanced serial
robotic manipulator. It consists of a parallelogram linkage with a balance mass to
balance the inertia forces of the motion of both the manipulator and the payload.
Since the mass of the payload is not constant, in general the force balance is not
perfect. But when the robot is moved quickly, the shaking forces in the base remain
relatively small. Because of force balance, it is known that the payload capacity
of the manipulator is higher or that it is able to move significantly faster [73], that
the actuator torques are lower [30], and that the calibration accuracy is higher [72].
Since actuator torques are internal moments that are not involved with dynamic
balance, their reduction is mainly because of static balance. When force balanced,
the actuators need not to be active to keep the robot in a certain position. Because
of this, a force balanced robot is energy efficient and inherently safe. It remains in
any position even in case of power outage or brake failure.

balance mass

moving stages (down)

balance mass

moving stages (top)

shaking
moment

(c)

(a) (b)

Fig. 1.4 a) Balance principle of the Twinscan system to eliminate base vibrations [36] where b) the
stage moves by interaction with a balance mass to have no shaking forces in the base; c) Shaking
moments exist when the stages and balance mass are not in the same plane.
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For high-speed hand-held tools such as the jig saw in Fig. 1.6, dynamic balance
is important for improving the ergonomics. Vibration damping materials, placed for
instance in the handles, are not effective here in reducing the vibrations sufficiently.
Investigation of a dynamically balanced chain saw showed that risks of injuries such
as vascular disease disorders were reduced significantly [64]. Because of reduced
vibrations, also the quality of the work is improved.

Figure 1.7 shows an exploded view of part of the jig saw. Part 52 is the crank that
is driven by the motor and has a balance mass on opposite side of the pin that drives
the saw with which it is force balanced. Part 53 is the balance mass which is driven
by a cam transmission from the crank to move in opposite direction of the saw and
its connecting parts, among others parts 37 and 38. This means that the common
CoM of these parts is in a stationary point in the axis of rotation. Because of the
compact assembly of the parts such that they lay almost in the same plane and since
the motor speed is constant, the resulting shaking moments are low.

The jig saw is an example of an end-effector that is balanced in order to not
perturb its manipulator, the human hand and arm. On the contrary, the Steadicam
in Fig. 1.8 is an example of an end-effector that is balanced to not be perturbed
by the manipulator. To quickly move the camera in any direction while keeping it
steady for high quality recordings, the camera system is force balanced with respect
to the point where the hand applies for manipulation. Then the common CoM of the
camera and the balance mass is in this point.

Figure 1.9 shows the Skycam robotic camera system which can be regarded an
advanced and automatized version of the Steadicam [27]. It consists of a dynami-
cally balanced camera system that is applied as an end-effector of a cable-driven
parallel manipulator which moves the camera system throughout a large space,

com
balance

mass payload

Fig. 1.5 ABB IRB760 palletizer manipulator with balance mass for force balance of manipulator
and payload to have low dynamic forces in the base, increased payload capacity, and increased
efficiency and safety. (www.ABB.com, 2014)
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Fig. 1.6 For high-speed hand-held tools dynamic balance improves ergonomics, reduces the risks
of injuries, and improves the quality of the work. (balanced jig saw DW331K, www.dewalt.com,
2014)

spanning for instance a complete sports field. Dynamic balance here is important
for proper control of the camera for two reasons. The camera system can easily lose
its orientation and start to spin, rotate, and swing (as a pendulum) because of the
imposed motion by the manipulator, but also because of motion of the camera sys-
tem itself since the stiffness of the cable-manipulator is limited. When dynamically
balanced, the camera system is dynamically decoupled from the cable-manipulator,
vice versa.

crank (52)

balance
mass (53)

saw &
holder (37,38)

com

SIDE
VIEW

Fig. 1.7 Exploded view and illustration of a jig saw with force-balanced crank (52) and balance
mass (53) to balance the reciprocating motion of the saw and connecting parts (a.o. 37 and 38).
(www.dewalt.com, 2014)



8 1 Introduction

com

balance
mass

camera

Fig. 1.8 The Steadicam is force balanced to not be perturbed when manipulated with the hand.
(www.steadicam.com, 2014)

Fig. 1.9 The Skycam robotic camera system consists of a cable driven parallel manipulator with a
camera system as end-effector that is dynamically balanced for stability. (www.skycam.tv, 2014)
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inertia
pitch & roll
camera

inertia
yaw
camera

(a) (b)

inertia
device

counter-
rotating
inertia

com

Fig. 1.10 a) The Skycam is force balanced with the CoM of the camera below and the system on
top in the point where the cable manipulator applies. Moment balance of the camera’s pitching and
rolling motions is achieved by counter-rotation of the device about its CoM; b) Moment balance of
the yawing motion of the camera is obtained by a counter-rotating inertia on top [27].

com

balance
mass

movable bridge

Fig. 1.11 For a bascule bridge force balance reduces the actuation power and the dynamic forces
while safety is improved. (Hollandse IJssel near Gouda (NL), constructed in 2012, courtesy of
Hollandia)
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As illustrated in Fig. 1.10a, the Skycam is force balanced such that the common
CoM of the camera below and the electronic system on top is in the point where the
cable manipulator applies. The camera can rotate in three directions. The shaking
moments of the pitching and rolling motion of the camera are balanced by opposite
rotations of the camera support system. These are rotations about the horizontal axes
in the plane where the cable manipulator applies. Since the inertia of camera support
system is significant larger than the inertia of the camera, these rotations remain rel-
atively small. For the moment balance of the yawing motion of the camera (rotation
about vertical axis) a counter-rotating inertia is used that is implemented in top of
the camera system as shown in Fig. 1.10b. Since this counter-rotating inertia is both
used as force balance mass and as moment balance inertia, it is regarded a counter-
rotating countermass which is known to be an advantageous balance solution for
low mass and low inertia [102].

The contrary of rapidly moving hand-held mechanisms are slowly moving archi-
tectural systems such as the movable bascule bridge in Fig. 1.11. Here a balance
mass is used to force balance the bridge while opening and closing. For these type
of mechanisms force balance is advantageous for low energy consumption, for low
driving forces and torques allowing manual operation, and for safety. During an
emergency stop the dynamic forces can become large, but when balanced they re-
main zero on the base. Also external forces e.g. due earthquakes do not affect the
motion of the bridge. Moment balance is partly achieved when the motors and the
inertia wheels - that are included in the drive-train of a bridge for the servo-control
- rotate in opposite direction of the bridge.

1.3 Limitations of current balancing methods and balance
solutions for multi-degree-of-freedom mechanisms

Contrary to the dynamic balancing of one-degree-of-freedom (1-DoF) mechanisms,
a topic being investigated for well over a century [7, 8], the dynamic balancing of
multi-DoF serial and, in particular, parallel mechanisms, started relatively recently.
Force balancing of the serial manipulator PUMA-760 was studied at the end of
the 1980’s [30, 72, 73] and in 1996 an investigation of the force balancing of a
3-DoF planar parallel manipulator was presented [65]. With the force and moment
balancing of a 3-DoF planar parallel manipulator in 2000, dynamic balancing of
parallel manipulators was first treated in a systematic way [85].

Although various articles have been published afterwards such as [5, 58, 75, 25,
26], the total volume of related literature still is considerably small. The results also
turn out to be technically challenging to apply in practice. In most cases the dy-
namic balancing of multi-DoF mechanisms is investigated by direct application of
known solutions from the dynamic balancing of 1-DoF mechanisms. Therefore two
main approaches have evolved, referred to here as the link-by-link approach where
each link is considered for balance individually and the leg-by-leg approach where
each leg (connecting the moving platform and the base) of a parallel mechanism is
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considered for balance individually [59, 9, 93]. It was shown that these approaches
lead to a significant, if not huge, addition of mass and inertia and also to complex
designs [94, 102, 98, 97, 93, 92]. An increase of mass and inertia by a factor four
as best result showed already to be challenging to obtain. Where low mass is typ-
ically important for moving vehicles, space manipulators, and robot end-effectors,
low inertia is important for low driving torques and low energy consumption. For
high-speed manipulators dynamic balance solutions with low inertia are of specific
importance while the mass can be higher since their base, and therefore the mass of
the manipulator, remains stationary. Especially balance elements on links that have
no pivot with the base are disastrous for the mass and inertia of a mechanisms. With-
out additional counter-rotations moment balancing is hardly possible [34, 71, 107].

With both the link-by-link approach and the leg-by-leg approach a parallel mech-
anism is regarded a combination of multiple (serial) mechanisms balanced individu-
ally. Closed-loop kinematics then are not considered and therefore the solutions that
are obtained are limited. These solutions also risk to have more balance elements
than necessary. This is since individually the links and legs have more degrees-of-
freedom than the manipulator they are part of.

Another limitation is that the dynamic balancing of multi-DoF mechanisms is
considered at the end of the design process in a similar way as the dynamic balanc-
ing of 1-DoF mechanisms. The design process is initiated with the kinematic synthe-
sis for a determined motion along a certain trajectory or within a certain workspace
as required for the intended task. Various kinematic solutions (i.e. various mecha-
nisms) are found suitable of which one is selected. This solution is optimized for,
among others, good force transmissions, low complexity, chosen actuation means,
and suitable size. Subsequently the dynamic balancing of the mechanism is consid-
ered which then is only possible with additional elements. Therefore the likeliness
that the balance solutions are advantageous is particularly small. As a compromise,
for 1-DoF mechanisms it was proposed to relax the kinematic requirements in order
to improve dynamics [38]. Although for parallel mechanisms this could be advanta-
geous too, this step is still overlooked.

Various solutions exist to reduce shaking forces and shaking moments of manipu-
lators with limited addition of mass and inertia. With motion planning a manipulator
is moved along trajectories that cause minimal shaking forces and shaking moments
[80]. Partial balancing of the shaking forces and shaking moments, or solely balanc-
ing the shaking forces fully or partly can also be useful [25]. For 1-DoF mechanisms,
of which the motion trajectory is prescribed, partial balance is often found as best
compromise [91]. Another possibility to reduce mass and inertia addition is, instead
of balancing each element passively (i.e. by mechanical means), to balance multiple
or all elements together with separate actively controlled balance elements on the
base [94, 99]. Then less balance effort is required since only the resultant forces and
moments are considered. Techniques such as the balancing of specific frequencies in
1-DoF mechanisms or in rotatory machines [112], automatic rotary balancers [28],
flywheels [90], and prescribing the input speed for optimal balancing [66] are not
applicable for the balancing of multi-DoF robotic manipulators since they require
constant repetitive behavior.
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Other topics of dynamic balancing include input torque balancing [37], power
balancing, pin (bearing) force balancing, and balancing of the internal forces [90, 6,
89], and the dynamic balancing of flexible (compliant) mechanisms [110]. Although
they are important and related issues in machine design, their aims are different from
the balancing of shaking forces and shaking moments.

1.4 Focus on inherently balanced mechanism design

Because of the additional mass, inertia, and complexity that is needed to balance a
mechanism, the current attitude towards dynamic balancing is that ”the price paid
for shaking force and shaking moment balancing is discouraging” [67]. The question
then is how to design dynamically balanced mechanisms that encourage them to be
applied.

An important difference with 1-DoF mechanisms is that the kinematic design
of multi-DoF manipulators is flexible. Especially of parallel mechanisms often a
multitude of kinematic solutions are suitable to have the manipulator perform its
tasks since motions are determined by the controller. For instance a delta robot as
in Fig. 1.1 is able to pick and place from a conveyor belt into a box also when the
dimensions of the elements are changed. The selection of the kinematic solution of
multi-DoF manipulators however is based on rather intuitive choices. For instance
the ’optimal’ kinematics of the Adept Quattro - one of the most successful delta
robots - were determined by minimizing a cost function of a specific motion along
a single specific trajectory, based on minimizing the sum of the link lengths and a
specific choice on the condition number [81]. These design criteria can be changed
easily. This means that the focus when designing high-speed manipulators can be
shifted from kinematic issues to dynamic issues such as dynamic balance.

Mechanism elements that determine the motion of a mechanism can be designed
to function for dynamic balance as well, but this has shown to be insufficient for
dynamic balance. Additional balance elements however solely function for the dy-
namic balance while they do not influence the kinematics. They are not involved
in determining the motion of the mechanism. This means that there is a possibility
to improve the design of balanced mechanisms by involving all elements with the
motion as well as with the dynamic balance. A dynamically balanced mechanism
where all elements contribute to both the motion and the dynamic balance will be
named an inherently dynamically balanced mechanism.

To take advantage of the parallel architecture for the purpose of dynamic bal-
ance, the common way of designing a balanced mechanism - to first consider solely
the kinematics of the manipulator and subsequently its balancing - is not efficient.
When, after all the effort to balance a given architecture, the balance solutions are
not applicable, the kinematics have to be considered all over again. When, on the
contrary, in the conceptual phase of the design it would be possible to consider dy-
namic balance prior to the kinematic synthesis, then mechanism solutions may be
found that are inherently dynamically balanced with advantageous balance charac-
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teristics. Dynamic balance then would not be determined by kinematical choices and
balance solutions would not be limited beforehand. This may also lead to new kine-
matic solutions, possibly with fewer elements and with less additional mass, inertia,
and complexity. The approach of considering dynamic balance as a design princi-
ple in the kinematic synthesis will be referred to as the inherent dynamic balancing
approach of mechanisms.

The aim of this work is to propose and develop a methodology for analysis and,
in particular, synthesis of inherently force and moment-balanced mechanisms and
to show the application potential of the results.

1.5 Outline

This work is divided in 10 chapters. In chapter 2 the theory of force balancing is
introduced by investigating how linear momentum equations can be used to find
the inherent force balance solutions of given mechanisms and to find advantageous
kinematic solutions. Closed-chain linkages are investigated for force balance by
considering the loop closure relations.

From chapter 3 onwards, the theory is approached at a more abstract level. In this
chapter it is shown how mechanism architectures can be designed that are inherently
force balanced with solely essential kinematic conditions. Principal vectors linkages
are proposed, developed, and investigated and methods for analysis are found and
applied.

Chapter 4 extends the theory by showing how the loop closure relations of closed
kinematic chains can be considered with equivalent masses. A method is proposed
where an element with a general mass distribution is modeled mass equivalently
with real and virtual equivalent masses with which closed-chain principal vector
linkages are derived.

In chapter 5 various related theories from literature are generalized and combined
to investigate how principal vector linkages can become extended principal vector
linkage architectures. A closed-chain principal vector linkage architecture of two
similar linkages with multiple interconnections is created and analyzed.

In chapter 6 moment balancing is considered by showing how principal vector
linkages can be applied for inherent moment balance. The angular momentum of
principal vector linkages is written in a fundamental way from which the moment
balance solutions can be derived.

For application of the theory, in chapter 7 it is shown how inherently balanced
mechanism solutions for desired tasks and functions can be synthesized from princi-
pal vector linkage architectures. Concepts of inherently balanced manipulators and
end-effectors are derived together with concepts of large moving structures.

In chapter 8 the application of dynamic balance is evaluated with an experimental
setup of a high-speed manipulator to show how an inherently balanced manipulator
compares to an unbalanced manipulator and how dynamic balance can be advan-
tageous in practice. For the first time a high-speed dynamically balanced parallel
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manipulator was built and tested. Besides the balance performance also practical
aspects as the actuator torques, the bearing forces, and the effect of payload are
evaluated.

Chapters 9 and 10 reflect and conclude this work. In the appendix the history of
the method of principal vectors and of its founder Otto Fischer are presented.

Part of the content of this work has been published. The content of chapter 2 has
been published partly as:

• Van der Wijk, V., Krut, S., Pierrot, F., Herder, J.L.: Generic method for deriving
the general shaking force balance conditions of parallel manipulators with ap-
plication to a redundant planar 4-RRR parallel manipulator. Proceedings of the
13th IFToMM World Congress on Mechanism and Machine Science, Guanaju-
ato, Mexico (A12-523) (2011)

• Van der Wijk, V., Herder, J. L.: Dynamic balancing of a single crank-double
slider mechanism with symmetrically moving couplers. In: Pisla et al. (eds),
New Trends in Mechanism Science: Analysis and Design, Proceedings of the
IFToMM 3rd European Conference on Mechanism Science, 413-420, Springer
(2010, recipient of the best student paper award)

• Van der Wijk, V., Herder, J.L., Force Balanced Delta Robot, WO2010/128849
(patent, 2010)

• Van der Wijk, V., Herder, J.L.: Dynamic balancing of Clavels delta robot. In:
Kecskeméthy and Müller, Computational Kinematics, Proc. of the 5th Int. Work-
shop on Computational Kinematics, 315322, Springer (2009)

The content of chapter 3 has been published partly as:

• Van der Wijk, V., Herder, J. L.: Synthesis method for linkages with center of mass
at invariant link point - pantograph based mechanisms. Mechanism and Machine
Theory 24, 15-28 (2012)

• Van der Wijk, V., Herder, J.L.: On the development of low-mass force balanced
manipulators. In: Jadran Lenarc̆ic̆, Michael M. Stanisic, Advances in Robot
Kinematics, Proc. of the IFToMM 12th Int. Symposium on Advances in Robot
Kinematics, 411420, Springer (2010)

The content of chapters 4 and 5 are part of the publication:

• Van der Wijk, V., Herder, J.L.: Inherently balanced 4R four-bar based linkages.
In: Lenarc̆ic̆, J. and Husty, M. (Eds.), Latest Advances in Robot Kinematics,
Proc. of the IFToMM 13th Int. Symposium on Advances in Robot Kinematics,
309316, Springer (2012)

The content of chapter 6 has been published partly as:

• Van der Wijk, V.: Shaking-moment balancing of mechanisms with principal vec-
tors and momentum”. J. of Frontiers of Mechanical Engineering 8(1), 10-16
(2013)

• Van der Wijk, V., Herder, J. L.: The method of principal vectors for the syn-
thesis of shaking moment balanced linkages. In: Viadero, F. and Ceccarelli, M.
(Eds.), New Trends in Mechanism and Machine Science, MMS 7, Proc. of the
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4th IFToMM European Conference on Mechanism Science, 399-407, Springer
(2012)

The content of chapter 7 includes parts of various mentioned publications. The con-
tent of chapter 8 is part of the publications:

• Van der Wijk, V., Krut, S., Pierrot, F., Herder, J.L.: Design and experimental eval-
uation of a dynamically balanced redundant planar 4-RRR parallel manipulator.
I.J. of Robotics Research 32(6), 744-759 (2013)

• Van der Wijk, V., Krut, S., Pierrot, F., Herder, J.L., Manipulator comprising a
fixed base and a movable platform, with four motor-driven chains of articulated
links, WO2012-173471A1 (patent, 2012)

The content of the appendix was published as:

• Van der Wijk, V., Herder, J. L.: The work of Otto Fischer and the historical devel-
opment of his method of principle vectors for mechanism and machine science.
In: T. Koetsier, M. Ceccarelli (Eds.), Explorations in the History of Machines
and Mechanisms, Proc. of the 4th Int. Symp. on the History of Machines and
Mechanisms, 521-534, Springer (2012)

Related scientific literature from the author which is not part of this work include:

• Van der Wijk, V., Herder, J.L.: On the addition of degrees of freedom to force-
balanced linkages. Proc. of the 19th CISM-IFToMM Symposium on Robot De-
sign, Dynamics, and Control (Romansy), June 12-15, Paris, FR, 2012-025 (2012)

• Van der Wijk, V., Demeulenaere, B., Gosselin, C., Herder, J. L.: Comparative
analysis for low-mass and low-inertia dynamic balancing of mechanisms. ASME
Journal of Mechanisms and Robotics, Vol. 4, Issue 3, 031008 (2012)

• Van der Wijk, V., Herder, J.L.: Active dynamic balancing unit for controlled shak-
ing force and shaking moment balancing. Proc. of IDETC 2010, Vol. 2, Issue
PARTS A AND B, 1515-1522, ASME, Montreal, CA, DETC2010 28423 (2010)

• Van der Wijk, V., Herder, J.L.: Force balancing of variable payload by active
force-balanced reconfiguration of the mechanism. In: Jian S Dai, Matteo Zoppi
and Xianwen Kong, Reconfigurable Mechanisms and Robotics, Proceedings of
the ASME/IFToMM International Conference on Reconfigurable Mechanisms
and Robots, pp. 321-328, KC Edizioni (2009)

• Van der Wijk, V., Herder, J.L.: Guidelines for low mass and low inertia dy-
namic balancing of mechanisms and robotics. In: Torsten Kröger and Fiedrich
M. Wahl, Advances in Robotics Research, Proceedings of the German Workshop
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Chapter 2
Inherent force balance of given mechanisms with
linear momentum

Abstract In this chapter it is shown that with linear momentum equations the in-
herent force balance solutions of given mechanisms can be found in a generic and
systematic way. First open kinematic chains are investigated, followed by closed
kinematic chains that are composed of open kinematic chains. With the known open
chain method the loop closure relations of closed kinematic chains are not con-
sidered. The method of linearly independent linear momentum is proposed as an
intuitive and straightforward method to investigate closed kinematic chains by sub-
stituting the derivatives of the loop equations in the linear momentum equations. It
is shown how the linear momentum equations of a mechanism with multiple closed
loops include not only the general force balance conditions, but also a variety of
general and specific configurations of force-balanced mechanisms as subsets.

2.1 Open kinematic chains

An open kinematic chain is a chain of multiple connected elements of which only
one element has a connection with the base. Generally the force balancing of these
chains is investigated by analysis of the location of the common CoM, as for in-
stance with the PUMA 760 serial manipulator of two elements [31, 30, 72, 73]. In
this section it is shown how the force balance conditions of open kinematic chains
are derived with linear momentum equations. This approach will show its potential
when loop equations are considered later on.

Figure 2.1a shows a single rotatable link which is connected to the base with a
revolute pair in A0. Its orientation is described with angle θ1 relative to the base.
The link has a mass m1 of which the CoM is defined with parameters e1 and f1
as illustrated. The position of the link CoM can be written with respect to the xy-
reference frame with origin in A0 as

r1 =

[
r1x
r1y

]
= A0 +

[
e1 cosθ1 − f1 sinθ1
e1 sinθ1 + f1 cosθ1

]
(2.1)

17
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The linear momentum L of the link then can be written as

L = m1ṙ1 =

[
−m1e1 sinθ1 −m1 f1 cosθ1
m1e1 cosθ1 −m1 f1 sinθ1

]
θ̇1 =

[
C1
C2

]
(2.2)

with constants C1 and C2. Force balance is obtained for the conditions for which the
linear momentum is constant for all motion, which means for any value of the time
dependent parameters θ1 and θ̇1. In this case a constant linear momentum is only
possible for C1 =C2 = 0 and for the two force balance conditions:

m1e1 = 0 m1 f1 = 0 (2.3)

These conditions mean that the rotatable link is force balanced when the link
CoM is located in pivot A0 as illustrated in Fig. 2.1b.

A planar open chain of two links in series is shown in Fig. 2.2a. Here link 1 has
a pivot with the base in A0 and link 1 and 2 are connected with a revolute pair in
A1. The distance between A0 and A1 is l1, which is the length of link 1. The linkage
has 2-DoF motion which is described with angles θ1 and θ2. Link 2 has a mass m2
of which the CoM is defined in link 2 with parameters e2 and f2 as illustrated. The
position of m2 with respect to the base can be written as

r2 =

[
r2x
r2y

]
= A0 +

[
l1 cosθ1 + e2 cosθ2 − f2 sinθ2
l1 sinθ1 + e2 sinθ2 + f2 cosθ2

]
(2.4)

Together with (2.1), the linear momentum of this linkage can be written as

L = m1ṙ1 +m2ṙ2 =

[
−(m1e1 +m2l1)sinθ1 −m1 f1 cosθ1
(m1e1 +m2l1)cosθ1 −m1 f1 sinθ1

]
θ̇1 +

Fig. 2.1 a) Single rotatable
link with base pivot A0 and
mass m1 of which the CoM
is defined in the link with e1
and f1; b) Force balance is
obtained when the CoM is
located in A0.
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Fig. 2.2 a) 2-DoF open chain
of two links with general CoM
and with a revolute pair in A0
and A1; b) For force balance
the CoM of the second link is
in A1 while the CoM of link
1 is located at a determined
distance from A0 on the line
through A0 and A1.
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−m2e2 sinθ2 −m2 f2 cosθ2

m2e2 cosθ2 −m2 f2 sinθ2

]
θ̇2 =

[
C1
C2

]
(2.5)

The linear momentum equation is constant for all motion (i.e. for any value of the
time dependent parameters θ1, θ2, θ̇1, and θ̇2) for C1 =C2 = 0 and for the four force
balance conditions:

m1e1 +m2l1 = 0 m1 f1 = 0
m2e2 = 0 m2 f2 = 0 (2.6)

The resulting force balance solution is shown in Fig. 2.2b where the CoM of the
second link is in A1 and the CoM of link 1 is located at a distance e1 = −m2l1/m1
from A0 as illustrated.

Figure 2.3a shows a 3-DoF open chain of three links in series with a revolute
pair in A1, A2, and A3. The distance between A1 and A2 is l2, which is the length
of link 2. The motion of the linkage is described with angles θ1, θ2, and θ3. Link 3
has a mass m3 of which the CoM is defined in link 3 with parameters e3 and f3 as
illustrated. The position of m3 with respect to the base can be written as

r3 =

[
r3x
r3y

]
= A0 +

[
l1 cosθ1 + l2 cosθ2 + e3 cosθ3 − f3 sinθ3
l1 sinθ1 + l2 sinθ2 + e3 sinθ3 + f3 cosθ3

]
(2.7)

Together with (2.1) and (2.4), the linear momentum of this linkage can be written as

L = m1ṙ1 +m2ṙ2 +m3ṙ3 =[
−(m1e1 +m2l1 +m3l1)sinθ1 −m1 f1 cosθ1
(m1e1 +m2l1 +m3l1)cosθ1 −m1 f1 sinθ1

]
θ̇1 +[

−(m2e2 +m3l2)sinθ2 −m2 f2 cosθ2
(m2e2 +m3l2)cosθ2 −m2 f2 sinθ2

]
θ̇2 +
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Fig. 2.3 a) 3-DoF open chain of three links with general CoM and with a revolute pair in A0, A1,
and A2; b) For force balance the CoM of the third link is in A2 and the CoMs of links 1 and 2 are
located at determined distances from A0 on the line through A0 and A1 and from A1 on the line
through A1 and A2, respectively.
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−m3e3 sinθ3 −m3 f3 cosθ3
m3e3 cosθ3 −m3 f3 sinθ3

]
θ̇3 =

[
C1
C2

]
(2.8)

The linear momentum equation is constant for all motion (i.e. for any value of the
time dependent parameters θ1, θ2, θ3, θ̇1, θ̇2, and θ̇3) for C1 = C2 = 0 and for the
six force balance conditions:

m1e1 +m2l1 +m3l1 = 0 m1 f1 = 0
m2e2 +m3l2 = 0 m2 f2 = 0 (2.9)

m3e3 = 0 m3 f3 = 0

The resulting force balance solution is illustrated in Fig. 2.3b. From the force
balance conditions it is derived that the CoM of the third link is in A2, the CoM of
link 2 is at a distance e2 =−m3l2/m2 from A1, and the CoM of link 1 is at a distance
e1 =−m2l1/m1 −m3l1/m1 from A0, respectively. This can be explained also as that
the combined CoM of m2 and m3 is in A1 and that the combined CoM of m2 +m3
imagined in A1 and m1 is in A0.

To compare the approach with linear momentum with the approach of describing
the common CoM of the linkage to derive the force balance conditions, with (2.1),
(2.4), and (2.7) the position of the common CoM is written as

rCoM =
1

mtot
(m1r1 +m2r2 +m3r3)

= A0 +
1

mtot

[
(m1e1 +m2l1 +m3l1)cosθ1 −m1 f1 sinθ1
(m1e1 +m2l1 +m3l1)sinθ1 +m1 f1 cosθ1

]
+

1
mtot

[
(m2e2 +m3l2)cosθ2 −m2 f2 sinθ2
(m2e2 +m3l2)sinθ2 +m2 f2 cosθ2

]
+ (2.10)

1
mtot

[
m3e3 cosθ3 −m3 f3 sinθ3
m3e3 sinθ3 +m3 f3 cosθ3

]
=

[
C1
C2

]
with mtot = m1 +m2 +m3 the total mass of the linkage. Finding the conditions for
which rCoM is constant for all motion is of similar effort as to finding them from the
linear momentum equations.

Fig. 2.4 Spatial open chain
of three links with spherical
joints in A0, A1, and A2 which
is force balanced with the
solution in Fig. 2.3b.
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Spatial open chains are force balanced with the same solutions as planar open
chains. Figure 2.4 shows a spatial open chain of three links with spherical joints in
A0, A1, and A2. This chain is force balanced with the solution in Fig. 2.3b. Since
the only connection of the third link is in A2, for force balance m3 is in this point.
Subsequently the combined CoM of m2 and m3 is in A1 and the combined CoM of
m2 +m3 imagined in A1 and m1 is in A0.

2.2 Closed kinematic chains with open chain method

As mentioned with the link-by-link approach and the leg-by-leg approach in sec-
tion 1.3, these common approaches for the design of balanced closed kinematic
chains consist of composing them of balanced open kinematic chains [59, 107, 9,
26]. This is named here the open chain method for the design of balanced closed
kinematic chains. The loop closure relations then are not considered. The various
ways in which a specific balanced closed chain can be composed of balanced open
chains determine the obtained force balance solutions. For instance there are mul-
tiple ways to model the mass of links around the points where open chains are
connected [108]. For comparison with the force balance solutions that are obtained
when the loop closure relations are considered, investigated in the next section, here
it is shown how application of the open chain method results in conditioned force
balance solutions.
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Fig. 2.5 a) When a planar 4R four-bar linkage is regarded an open chain of three links in series
of which the first and the third link have pivots with the base then b) it is force balanced with the
solution in Fig. 2.3b.
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2.2.1 4R four-bar linkage

The planar 4R four-bar linkage in Fig. 2.5a can be regarded composed of the open
chain of three links in Fig. 2.3a of which the third link has a pivot with the base in
A3. Then with the solution in Fig. 2.3b the four-bar linkage is force balanced for the
conditions (2.9) as in Fig. 2.5b.

It is also possible to consider a 4R four-bar linkage a combination of the open
chain of two links in Fig. 2.2a and the rotatable link in Fig. 2.1a as illustrated in
Fig. 2.6a. Both open chains have a pivot with the base and they are connected in A2.
The force balance solution shown in Fig. 2.6b then is a combination of the solutions
in Fig. 2.1b and in Fig. 2.2b. Here the CoM of link 3 is in A3 and the CoMs of links
1 and 2 are determined with (2.6) where the CoM of link 2 is in A1.
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Fig. 2.6 a) When a 4R four-bar linkage is regarded a combination of an open chain of two links
in series and a rotatable link then b) it is force balanced with the combination of the solutions in
Figs. 2.1b and 2.2b.
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Another possibility is to consider a 4R four-bar linkage as a combination of two
open chains of two links in series as shown in Fig. 2.7a. Here the second links
of each chain are considered rigidly connected. With mass m2 divided in the two
equivalent masses ma

2 and mb
2 such that ma

2 +mb
2 = m2, each chain is force balanced

as in Fig. 2.2b where ma
2 is located in A1 and mb

2 is located in A2. With ma
2e2 =

mb
2(l2 − e2) the CoM of link 2 is located at a distance e2 from A1 with f2 = 0 and

the equivalent masses are calculated as ma
2 = m2(l2 − e2)/l2 and mb

2 = m2e2/l2.
With different joints such as spherical joints, the force-balanced linkages in

Figs. 2.5b, 2.6b, and 2.7b can become spatial force-balanced linkages with equal
force balance solutions. The balancing of the spatial 4R four-bar linkage or Bennett
linkage, which has only revolute pairs, can also be considered similarly in multiple
ways. Figure 2.8 shows the force balance solution when it is considered a combi-
nation of two open chains of two links as in Fig. 2.7b. In this case the CoM of link
2 can be located in any point in its link with the equivalent masses ma

2 and mb
2 lo-

cated on the vertices of a line through the CoM of link 2 with the axes of rotation of
joints A1 and A2, of which there is no unique solution [76, 77]. For force balance,
the CoMs of link 1 and link 3 can be anywhere on the lines t1 and t3 that are parallel
to the axes of rotation of joints A0 and A3, respectively.

2.2.2 Crank-slider mechanism

A crank-slider mechanism can be considered composed of an open chain of three
links in series as illustrated in Fig. 2.9a where the third link is a slider which does
not rotate with respect to the base. With θ̇3 = 0, the linear momentum equation (2.8)
reduces to
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Fig. 2.8 A force-balanced Bennett linkage can be regarded a combination of two balanced open
chains of two links with equivalent masses ma

2 and mb
2 on the axes of rotation through A1 and A2,

respectively. The CoM of link 2 can be in any point in its link.
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L =

[
−(m1e1 +m2l1 +m3l1)sinθ1 −m1 f1 cosθ1
(m1e1 +m2l1 +m3l1)cosθ1 −m1 f1 sinθ1

]
θ̇1 +[

−(m2e2 +m3l2)sinθ2 −m2 f2 cosθ2
(m2e2 +m3l2)cosθ2 −m2 f2 sinθ2

]
θ̇2 =

[
C1
C2

]
(2.11)

and the four force balance conditions of the crank-slider mechanism then become:

m1e1 +m2l1 +m3l1 = 0 m1 f1 = 0
m2e2 +m3l2 = 0 m2 f2 = 0 (2.12)

These solutions are readily obtained from the linear momentum equation, while
if the are obtained from the position of the common CoM (2.10) more effort is
required because of handling the constant terms.

The force balance solution is shown in Fig. 2.9b where the CoM of link 3 is not
determined and can be located anywhere in the link. The location and the orientation
of the slider can be freely chosen without affecting the mass parameters of links 1
and 2. Link 3 can also be a slider in two directions. With spherical joints as in
Fig. 2.4, the crank-slider mechanism in Fig. 2.9b becomes a force-balanced spatial
crank-slider mechanism. Then it is possible to have link 3 slide in all three directions
with any constant orientation without affection the mass parameters of links 1 and
2.

2.2.3 Delta robot manipulator

Figure 2.10 shows the delta robot manipulator of Fig. 1.1 which is a spatial parallel
mechanism of which the moving platform has 3-DoF translational motion [32, 33].
The platform is connected with the base with three arms of which the upper links
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Fig. 2.9 a) A crank-slider mechanism can be regarded an open chain of three links where link 3
solely translates with respect to the base; b) Since link 3 does not rotate, for force balance the CoM
of link 3 can be in any point in link 3 while the CoMs of links 1 and 2 are located as if m3 is in A2.
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have pivots with the base in A10, A20, and A30 and the lower links are parallelograms
that have spherical joints with the upper links in A11, A21, and A31 and spherical
joints with the moving platform in A12, A22, and A32.

For force balance each arm can be regarded a spatial open chain of three links,
where each parallelogram is considered a single link and the third links of each
chain are rigidly connected as the platform. Since the platform is solely translating,
the CoM of the mass of the platform and payload mp can be located in any point
in the platform, similarly as with the crank-slider mechanism in Fig. 2.9b. Then
with the three equivalent masses ma

p, mb
p, and mc

p in joints A12, A22, and A32, respec-
tively, such that mp = ma

p +mb
p +mc

p, the force-balanced manipulator in Fig. 2.11a
is obtained by combination of each force-balanced arm as illustrated in Fig. 2.11b.

The values of the equivalent masses can be chosen freely as long as their sum
equals mp. For instance for ma

p = mp +mb
22 +mb

32, mb
p = −mb

22, and mc
p = −mb

32,
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Fig. 2.10 A delta robot is a spatial parallel mechanism of which the moving platform has 3-DoF
translational motion.
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arms. (Patented [100])
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where mb
22 and mb

32 are equivalent masses of the parallelograms of arms 2 and 3,
respectively as illustrated in Fig. 2.12b, the force balance solution of the delta robot
becomes as shown in Fig. 2.12a. With this solution arms 2 and 3 can be considered
force-balanced open chains of two links as in Fig. 2.2 with equivalent masses of the
parallelograms ma

22 and ma
32.

When a delta robot is equipped with a spindle for an additional rotational DoF
of the end-effector, the mass of the spindle can be included too. The spindle is
connected to the center of the base and to the center of the platform and by a slider
its length is variable. The mass of the spindle can be modeled with two equivalent
masses of which one is located in the base and one is located in the platform. The
equivalent mass in the platform can be included in mp while the equivalent mass in
the base is not involved since it is stationary.

2.3 Closed kinematic chains including loop-closure relations

The previous section showed that by the open chain method the force balance so-
lutions of closed chains depend on design choices. One way to obtain the general
force balance solutions of closed kinematic chains is to consider the loop closure re-
lations. A commonly known method to do this is the method of linearly independent
vectors with which the position of the common CoM of a linkage is described [13].
In this section a new method is proposed where the linear momentum of the closed
chain linkage is written in a linearly independent form. This is named the method
of linearly independent linear momentum. This method aims at being more intuitive
and straightforward for the synthesis of force balance solutions. The method is first
applied to the 4R four-bar linkage and subsequently to a 4-RRR parallel mechanism.

m
a

32
m

b

32

m
a

22

m
b

22

mp
(a) (b)

base

m12

m31

m21

m11

m12

m31

m21

m11

mp

m32

m22

Fig. 2.12 a) Force-balanced delta robot when considered a combination of two open chains of
two links and a spatial crank-slider mechanism with platform translating in three directions; b)
The mass of two lower links is distributed with equivalent masses to the upper links and to the
platform. (Patented [100])
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2.3.1 4R four-bar linkage

To derive the general force balance conditions of the 4R four-bar linkage in Fig. 2.13a,
the positions of the link CoMs can be written relative to A0 as

r1 = A0 +

[
e1 cosθ1 − f1 sinθ1
e1 sinθ1 + f1 cosθ1

]
(2.13)

r2 = A0 +

[
l1 cosθ1 + e2 cosθ2 − f2 sinθ2
l1 sinθ1 + e2 sinθ2 + f2 cosθ2

]
(2.14)

r3 = A0 +

[
l1 cosθ1 + l2 cosθ2 + e3 cosθ3 − f3 sinθ3
l1 sinθ1 + l2 sinθ2 + e3 sinθ3 + f3 cosθ3

]
(2.15)

with li the length of link i of which each CoM is defined in its link with ei and fi, as
illustrated. The linear momentum is then written as

L = m1ṙ1 +m2ṙ2 +m3ṙ3

=

[
−(m1e1 +m2l1 +m3l1)sinθ1 −m1 f1 cosθ1
(m1e1 +m2l1 +m3l1)cosθ1 −m1 f1 sinθ1

]
θ̇1 +[

−(m2e2 +m3l2)sinθ2 −m2 f2 cosθ2
(m2e2 +m3l2)cosθ2 −m2 f2 sinθ2

]
θ̇2 + (2.16)[

−m3e3 sinθ3 −m3 f3 cosθ3
m3e3 cosθ3 −m3 f3 sinθ3

]
θ̇3

The loop equations can be formulated as

l1 cosθ1 + l2 cosθ2 + l3 cosθ3 − l4 cosθ4 = 0
l1 sinθ1 + l2 sinθ2 + l3 sinθ3 − l4 sinθ4 = 0 (2.17)
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Fig. 2.13 a) A general 4R four-bar linkage and b) the force balance configuration where the link
CoM of link 2 is freely selected.
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To include the loop equations in the linear momentum equations, their time deriva-
tives need to be substituted which are obtained as

−l1 sinθ1θ̇1 − l2 sinθ2θ̇2 − l3 sinθ3θ̇3 = 0
l1 cosθ1θ̇1 + l2 cosθ2θ̇2 + l3 cosθ3θ̇3 = 0

(2.18)

and can be rearranged as

sinθ2θ̇2 =− l1
l2

sinθ1θ̇1 − l3
l2

sinθ3θ̇3

cosθ2θ̇2 =− l1
l2

cosθ1θ̇1 − l3
l2

cosθ3θ̇3
(2.19)

Substituting these equations for sinθ2θ̇2 and cosθ2θ̇2 in (2.16) results in

L =

[
−(m1e1 +m2(1− e2

l2
)l1)sinθ1 − (m1 f1 −m2

f2
l2

l1)cosθ1

(m1e1 +m2(1− e2
l2
)l1)cosθ1 − (m1 f1 −m2

f2
l2

l1)sinθ1

]
θ̇1 +[

(m3(l3 − e3)+m2
e2
l2

l3)sinθ3 − (m3 f3 −m2
f2
l2

l3)cosθ3

−(m3(l3 − e3)+m2
e2
l2

l3)cosθ3 − (m3 f3 −m2
f2
l2

l3)sinθ3

]
θ̇3 (2.20)

The force balance conditions for which the linear momentum is constant for all
motion are readily obtained as:

m1e1 +m2(1− e2
l2
)l1 = 0 m1 f1 −m2

f2
l2

l1 = 0
m3(l3 − e3)+m2

e2
l2

l3 = 0 m3 f3 −m2
f2
l2

l3 = 0
(2.21)

These results are equal to the results found with the method of method of linearly
independent vectors in [13]. Different from that method however is that no parame-
ters related to the location of the common CoM are involved. The linear momentum
equations only include parameters of the moving elements. By including the loop
equations, the linear momentum of link 2 is written in linear terms of the motion
of links 1 and 3. When the non-linear relation between the motion of links 1 and 3
is included, and the linear momentum is written depending on the motion of one of
them, this does not result in different or more general force balance conditions.

Figure 2.13b shows a resulting force balance configuration where the CoM of
link 2 is freely selected, and from (2.21) the locations of the CoMs of links 1 and 3
are calculated with

e1 =−m2(1− e2
l2
) l1

m1
f1 =

m2 f2
l2

l1
m1

e3 = m2
e2
l2

l3
m3

+ l3 f3 =
m2 f2

l2
l3
m3

(2.22)

For the synthesis of balanced mechanisms it can be useful to consider a force-
balanced mechanism as a mechanism of which the common CoM of all elements
is in an invariant point in one of the links. The mechanism then is force balanced
about this invariant point. For instance for a four-bar mechanism this means that the
mass of all four links is taken into account. The importance of considering the mass
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of all elements depends on the application. For floating mechanisms such as robot
end-effectors this can be required.

In Fig. 2.14a the 4R four-bar linkage is shown with a general CoM in each of the
four elements, with m4 the mass of link 4. The position of the CoM of link 4 can be
written relative to A0 as

r4 = A0 +

[
(l4 − e4)cosθ4 + f4 sinθ4
(l4 − e4)sinθ4 − f4 cosθ4

]
(2.23)

An invariant point S in link 4 is defined with o1 and o2 relative to A3. The position
of S relative to A0 can be written as

rS = A0 +

[
(l4 −o1)cosθ4 +o2 sinθ4
(l4 −o1)sinθ4 −o2 cosθ4

]
(2.24)

To find the force balance conditions for which S is the common CoM of the four
links, the linear momentum of the linkage about S can be written as

LS = m1ṙ1 +m2ṙ2 +m3ṙ3 +m4ṙ4 −mtot ṙS

=

[
−(m1e1 +m2l1 +m3l1)sinθ1 −m1 f1 cosθ1
(m1e1 +m2l1 +m3l1)cosθ1 −m1 f1 sinθ1

]
θ̇1 +[

−(m2e2 +m3l2)sinθ2 −m2 f2 cosθ2
(m2e2 +m3l2)cosθ2 −m2 f2 sinθ2

]
θ̇2 +[

−m3e3 sinθ3 −m3 f3 cosθ3
m3e3 cosθ3 −m3 f3 sinθ3

]
θ̇3 + (2.25)[

−m4(l4 − e4)sinθ4 +m4 f4 cosθ4
m4(l4 − e4)cosθ4 +m4 f4 sinθ4

]
θ̇4 −
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Fig. 2.14 a) Of a four-bar linkage where the mass of all four links is considered, b) force balance
relative to link 4 is obtained when the common CoM is in an invariant point S in link 4.
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−mtot(l4 −o1)sinθ4 +mtoto2 cosθ4
mtot(l4 −o1)cosθ4 +mtoto2 sinθ4

]
θ̇4

with mtot = m1 +m2 +m3 +m4 the total mass of the linkage. Since here θ4 is a time
dependent parameter, the derivatives of the loop equations (2.17) write

−l1 sinθ1θ̇1 − l2 sinθ2θ̇2 − l3 sinθ3θ̇3 + l4 sinθ4θ̇4 = 0
l1 cosθ1θ̇1 + l2 cosθ2θ̇2 + l3 cosθ3θ̇3 − l4 cosθ4θ̇4 = 0

(2.26)

which can be rearranged as

sinθ2θ̇2 =− l1
l2

sinθ1θ̇1 − l3
l2

sinθ3θ̇3 +
l4
l2

sinθ4θ̇4

cosθ2θ̇2 =− l1
l2

cosθ1θ̇1 − l3
l2

cosθ3θ̇3 +
l4
l2

cosθ4θ̇4
(2.27)

After substitution for sinθ2θ̇2 and cosθ2θ̇2 the linear momentum can be written as

LS =

[
−(m1e1 +m2(1− e2

l2
)l1)sinθ1 − (m1 f1 −m2

f2
l2

l1)cosθ1

(m1e1 +m2(1− e2
l2
)l1)cosθ1 − (m1 f1 −m2

f2
l2

l1)sinθ1

]
θ̇1 +[

(m3(l3 − e3)+m2
e2
l2

l3)sinθ3 − (m3 f3 −m2
f2
l2

l3)cosθ3

−(m3(l3 − e3)+m2
e2
l2

l3)cosθ3 − (m3 f3 −m2
f2
l2

l3)sinθ3

]
θ̇3 −

−(mtot(l4 −o1)−m2
e2
l2

l4 −m3l4 −m4(l4 − e4))sinθ4+

(mtoto2 +m2
f2
l2

l4 −m4 f4)cosθ4

(mtot(l4 −o1)−m2
e2
l2

l4 −m3l4 −m4(l4 − e4))cosθ4+

(mtoto2 +m2
f2
l2

l4 −m4 f4)sinθ4

 θ̇4 (2.28)

The conditions for which S is the common CoM for all motion, i.e. for which the
linear momentum is constant for all motion, are the general force balance conditions
of the 4R four-bar linkage:

m1e1 +m2(1− e2
l2
)l1 = 0 m1 f1 −m2

f2
l2

l1 = 0
m3(l3 − e3)+m2

e2
l2

l3 = 0 m3 f3 −m2
f2
l2

l3 = 0
mtot(l4 −o1)−m2

e2
l2

l4 −m3l4 −m4(l4 − e4) = 0 mtoto2 +m2
f2
l2

l4 −m4 f4 = 0
(2.29)

Four of the force balance conditions are equal to (2.21). The other two determine
the locations of S and m4 in link 4. With the CoMs of link 2 and link 4 freely selected
as in the resulting force balance configuration in Fig. 2.14b, from the force balance
conditions the locations of the CoMs of link 1 and link 3 and of S are calculated as

e1 =−m2
m1

(1− e2
l2
)l1 f1 =

l1
m1

m2 f2
l2

o1 =
l4

mtot
(m1 +m2(1− e2

l2
)+m4

e4
l4
)

e3 =
m2
m3

e2
l2

l3 + l3 f3 =
l3
m3

m2 f2
l2

o2 =− l4
mtot

(m2
f2
l2
−m4

f4
l4
)

(2.30)
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If the location of S in link 4 is freely selected, the location of the CoM of link 4 is
derived as

e4 =
mtot
m4

o1 − l4
m4

(m1 +m2(1− e2
l2
)) f4 =

mtot
m4

o2 +
l4
m4

m2 f2
l2

(2.31)

From the force balance conditions (2.29) a variety of force balance configurations
can be found. With m4 = 0 the solution in Fig. 2.13b is obtained and with m4 =
0 and f1 = f2 = f3 = 0 the force balance solutions in Figs. 2.5b, 2.6b, and 2.7b
are obtained. Figure 2.15 shows force balance configurations where m3 is freely
selected. It is shown how the locations of m1 and m2 depend on the location of m3
where parameters f1, f2, and f3 keep the same sign. Dependent on the location of
m4, the location of S can also change of side. Figure 2.16a shows a force balance
configuration where all link CoMs are located in points extended from their links,
and in the configuration in Fig. 2.16b S coincides with A0, e2 = 0, and e3 = l3.

Figure 2.17 shows a physical model in two poses of the force-balanced mecha-
nism in Fig. 2.14b with fi = 0. The links are made of Ø 4 mm welding rod with shiny
copper-brown appearance while the joint axles are made of Ø 2 mm welding rod.
To limit the lengths of links 1 and 3, each has a counter-mass of steel. Figure 2.18
shows a physical model in two poses of the force-balanced mechanism in Fig. 2.15a
with fi = 0. Also this model is made of Ø 4 mm and Ø 2 mm welding rod.
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Fig. 2.16 a) Force balance configuration with all link CoMs in points extended from their links;
b) Force-balance configuration with S and A0 coinciding and where m2 and m3 are located on the
lines through A1 and A3 perpendicular to their links, respectively.
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Fig. 2.17 Physical model in two poses of the force-balanced four-bar linkage in Fig. 2.14b when
fi = 0. (see model in motion at: www.kineticart.nl)

Fig. 2.18 Physical model in two poses of the force-balanced four-bar linkage in Fig. 2.15 when
fi = 0. (see model in motion at: www.kineticart.nl)

http://www.kineticart.nl/fourcompositions
http://www.kineticart.nl/?page=compositie_P-5R-01
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2.3.2 Parallelogram and pantograph linkage

The linear momentum (2.28) of the general 4R four-bar linkage consists of three
non-linearly dependent terms. When specific kinematic conditions are found for
which some of these terms become linearly dependent, then they can be summed
and reduced force balance conditions can be obtained. For instance for the specific
kinematic conditions that θ3 = θ1 +π and θ4 = θ2 (θ̇3 = θ̇1 and θ̇4 = θ̇2), which is
for the geometrical conditions l1 = l3 = a1 and l2 = l4 = a2, the linear momentum
in (2.28) can be written as

LS =

[
−(m1e1 +m2a1 +m3(a1 − e3))sinθ1 − (m1 f1 −m3 f3)cosθ1
(m1e1 +m2a1 +m3(a1 − e3))cosθ1 − (m1 f1 −m3 f3)sinθ1

]
θ̇1 −

−(mtot(a2 −o1)−m2e2 −m3a2 −m4(a2 − e4))sinθ2+
(mtoto2 +m2 f2 −m4 f4)cosθ2

(mtot(a2 −o1)−m2e2 −m3a2 −m4(a2 − e4))cosθ2+
(mtoto2 +m2 f2 −m4 f4)sinθ2

 θ̇2 (2.32)

The linear momentum is constant for all motion for the force balance conditions:

m1e1 +m2a1 +m3(a1 − e3) = 0 m1 f1 −m3 f3 = 0
mtot(a2 −o1)−m2e2 −m3a2 −m4(a2 − e4) = 0 mtoto2 +m2 f2 −m4 f4 = 0

(2.33)

Figure 2.19a illustrates the obtained mechanism which is a parallelogram link-
age. As compared to the general four-bar linkage which has six force balance con-
ditions, with four force balance conditions one additional link CoM can be freely
selected, which is shown here for m3. This means that the mechanism has more
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Fig. 2.19 a) Force-balanced parallelogram linkage where the CoMs of links 2 and 3 are freely
selected; b) Force balance configuration with S and A0 coinciding where the CoMs of links 2 and
3 are freely selected.
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freedom for balanced design. For instance in the solution shown in Fig. 2.19b the
locations of the CoMs of links 2 and 3 are not limited as in Fig. 2.16b.

Alternative force balance configurations are shown in Fig. 2.20 where S and A3
coincide. The mechanism in Fig. 2.20b is also known as a pantograph linkage. It can
be considered a specific version of Sylvester’s pantograph or a modified version of
Scheiner’s pantograph [11]. The pantograph linkage is known for balancing because
of its properties of similarity [61, 7, 107, 25]. In the next chapters it will be shown
how the pantograph is a fundamental mechanism for the synthesis of inherently
dynamically balanced linkages.

A physical model of a force-balanced pantograph linkage is shown in various
poses in Fig. 2.21. All elements were made of steel and all joint axles were made of
Ø 2mm welding rod. The diagonally oriented elements in the left picture are double
layered, while the horizontally orientated elements are single layered and positioned
in between.
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Fig. 2.20 Specific force balance configurations where S and A3 coincide. The configuration in (b)
is known as a balanced pantograph linkage.
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Fig. 2.21 Physical model of the force-balanced pantograph linkage in Fig. 2.20b in various poses.
(see model in motion at: www.kineticart.nl)

http://www.kineticart.nl/?page=kleine_acrobaat
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2.3.3 4-RRR parallel manipulator

In this section it is shown how the method of linearly independent linear momentum
is applied to find the inherent force balance conditions of mechanisms with multiple
closed loops. Therefore a planar 4-RRR parallel manipulator is investigated. It is
also shown how for specific kinematic conditions specific force balance configura-
tions are obtained.

The general configuration of a 3-DoF planar 4-RRR parallel manipulator is
shown in Fig. 2.22. It has four arms i consisting each of two links j with lengths
li j which are connected with revolute pairs in Bi. The orientation of each link is
described with θi j with respect to the x-axis of the reference frame. Each arm is
connected to the base with pivots in Ai and to the moving platform with revolute
pairs in Ci. The moving platform has a width c5, a height d5, and an orientation
θ5. The CoM of mass mi j in each link is defined with ei j and fi j as illustrated. The
platform has a mass m5 of which the CoM is defined with e5 and f5 with respect to
its center.

The positions of the link CoMs can be written in various ways. The shortest way
is to write the link CoMs of each arm with respect to its base pivot as

ri1 = Ai +

[
ei1 cosθi1 − fi1 sinθi1
ei1 sinθi1 + fi1 cosθi1

]

ri2 = Ai +

[
li1 cosθi1 + ei2 cosθi2 − fi2 sinθi2
li1 sinθi1 + ei2 sinθi2 + fi2 cosθi2

] (2.34)
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Fig. 2.22 General configuration of a planar 3-DoF 4-RRR parallel manipulator. Four arms of two
links connect the moving platform C1C2C3C4 to the base in pivots A1, A2, A3, and A4.
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The position of the CoM of the platform can also be written in various ways, for
instance with respect to one of the pivots Ai. A shorter solution is to divide the mass
of the platform in four equivalent masses µ5i that are located in joints Ci, of which
the positions are written as

r5i = Ai +

[
li1 cosθi1 + li2 cosθi2
li1 sinθi1 + li2 sinθi2

]
(2.35)

In this case parameter θ5 is omitted. The equivalent masses are related to the mass
and the CoM of the platform as

µ51 +µ52 +µ53 +µ54 = m5 (2.36)

µ51 −µ52 −µ53 +µ54 =
m5e5

c5
(2.37)

−µ51 −µ52 +µ53 +µ54 =
m5 f5

d5
(2.38)

This equivalent mass model is illustrated in Fig. 2.23. With three equations, one of
the four equivalent masses is independent. The linear momentum of the manipulator
can be written with the derivatives of the position vectors as

L =
4

∑
i=1

(
mi1ṙi1 +mi2ṙi2 +µ5iṙ5i

)
(2.39)

=

[
−λ111 sinθ11 −λ112 cosθ11

λ111 cosθ11 −λ112 sinθ11

]
θ̇11 +

[
−λ211 sinθ21 −λ212 cosθ21

λ211 cosθ21 −λ212 sinθ21

]
θ̇21 +[

−λ311 sinθ31 −λ312 cosθ31
λ311 cosθ31 −λ312 sinθ31

]
θ̇31 +

[
−λ411 sinθ41 −λ412 cosθ41

λ411 cosθ41 −λ412 sinθ41

]
θ̇41 +[

−λ121 sinθ12 −λ122 cosθ12
λ121 cosθ12 −λ122 sinθ12

]
θ̇12 +

[
−λ221 sinθ22 −λ222 cosθ22

λ221 cosθ22 −λ222 sinθ22

]
θ̇22 +[

−λ321 sinθ32 −λ322 cosθ32
λ321 cosθ32 −λ322 sinθ32

]
θ̇32 +

[
−λ421 sinθ42 −λ422 cosθ42

λ421 cosθ42 −λ422 sinθ42

]
θ̇42
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Fig. 2.23 For the shortest description of the position of the platform CoM, its mass m5 is modeled
with four equivalent masses µ5i in the joints Ci.
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with

λi11 = mi1ei1 +mi2li1 +µ5ili1 λi12 = mi1 fi1
λi21 = mi2ei2 +µ5ili2 λi22 = mi2 fi2

(2.40)

Since the linear momentum is zero for all motion when λi jk = 0, already various
force balance solutions are obtained. For instance the force balance configuration in
Fig. 2.24a where one µ5i is freely selected and each arm is force balanced individu-
ally as with the open chain method. Figure 2.24b shows a force balance configura-
tion where e22 and e42 are freely selected and µ52 and µ54 are obtained from (2.40)
as

µ52 =
−e22m22

l22
, µ54 =

−e42m42

l42

Characteristic of these force balance solutions is that fi j = 0.
The 4-RRR manipulator has three independent closed loops of which the rela-

tions can be written as

r51 = A1A2 + r52 + c5

[
cθ5
sθ5

]
r51 = A1A3 + r53 + c5

[
cθ5
sθ5

]
+d5

[
sθ5

−cθ5

]
(2.41)

r51 = A1A4 + r54 +d5

[
sθ5

−cθ5

]
with c() and s() as shorthand for cos() and sin(), respectively. The time derivatives
of the loop equations can be derived as
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Fig. 2.24 Force balance configurations without considering the loop-closure relations where (a)
one µ5i is freely selected and (b) the CoMs of links 22 and 42 are freely selected.
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l11

[
−sθ11

cθ11

]
θ̇11 + l12

[
−sθ12

cθ12

]
θ̇12 = l21

[
−sθ21

cθ21

]
θ̇21 +

l22

[
−sθ22

cθ22

]
θ̇22 + c5

[
−sθ5

cθ5

]
θ̇5 (2.42)

l11

[
−sθ11

cθ11

]
θ̇11 + l12

[
−sθ12

cθ12

]
θ̇12 = l31

[
−sθ31

cθ31

]
θ̇31 +

l32

[
−sθ32

cθ32

]
θ̇32 + c5

[
−sθ5

cθ5

]
θ̇5 +d5

[
cθ5
sθ5

]
θ̇5 (2.43)

l11
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−sθ11

cθ11
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θ̇11 + l12
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−sθ12

cθ12

]
θ̇12 = l41

[
−sθ41

cθ41

]
θ̇41 +

l42

[
−sθ42

cθ42

]
θ̇42 +d5

[
cθ5
sθ5

]
θ̇5 (2.44)

Since vectors A1A2, A1A3, and A1A4 are constant, they do not appear in the time
derivatives. It is possible to reduce these 6 equations to 4 equations by eliminating
θ5 and θ̇5. Rearranging the resulting equations for θ12 and θ32 then results in[

sθ12
cθ12

]
θ̇12 =− l11

l12

[
sθ11
cθ11

]
θ̇11 +

l21
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θ̇42

(2.45)[
sθ32
cθ32

]
θ̇32 =− l31
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sθ31
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θ̇31 +
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l32
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l41

l32

[
sθ41
cθ41

]
θ̇41+
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(2.46)

with U = c5
d5

+ d5
c5

. When these equations are substituted for sθ12θ̇12, cθ12θ̇12,
sθ32θ̇32, and cθ32θ̇32 in (2.39), the linear momentum equations become
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L =

[
(−λ111 +

l11
l12

λ121)sθ11 +(−λ112 +
l11
l12

λ122)cθ11

(λ111 − l11
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λ121)cθ11 +(−λ112 +
l11
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Fig. 2.25 Description of the platform CoM with parameters e6 and f6 along line C2C4 with length
l6.
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For force balance the linear momentum has to be constant for all motion, i.e.
for all values of the time dependent parameters. This means that the 12 different
coefficients in the linear momentum equations have to be zero. After substituting
λi jk, µ5i, and U , the twelve general force balance conditions of the planar 4-RRR
parallel manipulator are derived as:

m11e11 +m12l11(1− e12
l12
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with

l6 =
√

c2
5 +d2

5 e6 =
l6
2 + c5e5+d5 f5

l6
f6 =

c5 f5−d5e5
l6

(2.49)

where parameters e6 and f6 describe the CoM of the platform along the diagonal
line C2C4, which has a length l6 as illustrated in Fig. 2.25.

In Figs. 2.26 and 2.27 four force balance configurations are presented that can be
derived from these general force balance conditions. Different from the configura-
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tions in Fig. 2.24 the parameters fi j are not required to be zero. In the configuration
in Fig. 2.26a the CoMs of the platform and of links 12 and 32 are freely selected and
in the configuration in Fig. 2.26b the CoMs of the platform and of links 22 and 32
are freely selected. In the configuration in Fig. 2.27a the CoMs of the platform and
of links 21 and 31 are freely selected and Figure 2.27b show a generalized version
of the configuration in Fig. 2.24a. It is observed that in each configuration in total 3
link CoMs can be freely selected. This number is equal to the number of indepen-
dent closed loops. Since each link CoM is defined with two parameters, in total 6
mass parameters can be defined by the designer.

Force balance solutions for specific kinematic conditions

The linear momentum (2.47) of the general 4-RRR parallel manipulator consists
of six non-linearly dependent terms. Reduced force balance configurations can be
obtained for specific kinematic conditions for which some of these terms become
linearly dependent. For instance when θ11 = θ42 and θ22 = θ31 (θ̇11 = θ̇42 and θ̇22 =
θ̇31) the first and sixth and the third and fifth term in (2.47) are linearly dependent,
respectively. The linear momentum equations then reduce to
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Fig. 2.26 Force balance configurations from general force balance conditions with (a) CoMs of
platform and of links 12 and 32 freely selected and (b) CoMs of platform and of links 22 and 32
freely selected.
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Fig. 2.27 Force balance configurations from general force balance conditions with (a) CoMs of
platform and of links 21 and 31 freely selected and (b) as generalized version of the configuration
in Fig. 2.24a.
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With λi jk, µ5i, and U substituted, from these linear momentum equations eight force
balance conditions are obtained as:
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These force balance conditions are a combination of the twelve force balance
conditions in (2.48). For the specific kinematic conditions Fig. 2.28a shows a pos-
sible configuration of the 4-RRR manipulator that has also the kinematic conditions
θ21 = θ32, θ12 = θ41, and θ5 = 0 (θ̇21 = θ̇32, θ̇12 = θ̇41, and θ̇5 = 0) and the geo-
metric conditions l11 = l42, l12 = l41, l21 = l32, and l22 = l31. Then l11 ∥ l42, l12 ∥ l41,
l21 ∥ l32, l22 ∥ l31, A1A4 ∥ C1C4, and A2A3 ∥ C2C3 for all motion of the manipulator
with non-rotating but solely translating platform.

A possible force balance configuration is shown in Fig. 2.29a where the CoMs of
the platform and of links i2 are freely selected. Then the CoMs of links i1 are deter-
mined for balance. In practice this is an advantageous force balance configuration
for low mass and low inertia, since it can be achieved with counter-masses that are
mounted solely about pivots with the base [97].

Other specific kinematic conditions for which terms of the linear momentum
become linearly dependent are θ11 = θ41 and θ21 = θ31 (θ̇11 = θ̇41 and θ̇21 = θ̇31).
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When substituted in the linear momentum (2.47), eight force balance conditions are
obtained as
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These force balance conditions are also a combination of the twelve general force
balance conditions in (2.48). For these specific kinematic conditions Fig. 2.28b
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Fig. 2.28 Configurations of the 4-RRR parallel manipulator for the specific kinematic conditions
that (a) the platform does not rotate, θ11 = θ42, and θ22 = θ31 and (b) the platform does not rotate,
θ11 = θ41, and θ21 = θ31.
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shows a possible configuration of the 4-RRR parallel manipulator that has also
the kinematic conditions θ12 = θ42, θ22 = θ32, and θ5 = 0 (θ̇12 = θ̇42, θ̇22 = θ̇32,
θ̇5 = 0) and the geometric conditions l11 = l41, l12 = l42, l21 = l31, and l22 = l32.
Then l11 ∥ l41, l12 ∥ l42, l21 ∥ l31, l22 ∥ l32, A1A4 ∥ C1C4, and A2A3 ∥ C2C3 for all
motion of the manipulator with non-rotating but solely translating platform.

Figure 2.29b shows a possible force balance configuration where the CoMs of
the platform and of links 12, 22, 31, and 41 are freely selected and the CoMs of link
11, 21, 32, and 42 are determined for force balance. In practice, solutions with deter-
mined CoMs of floating links lead to significant mass and inertia of the mechanism
[97].
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Force balance configuration where CoMs of the platform and of link 12 are freely selected.
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2.3.4 3-RRR parallel manipulator

To find the general force balance conditions of the planar 3-RRR parallel manipu-
lator in Fig. 2.30a it is possible to apply the method of linearly dependent linear
momentum from the beginning. It is also possible to obtain them as a subset of
the force balance conditions of the 4-RRR parallel manipulator. For instance when
links 31 and 32 in the configuration in Fig. 2.22 are eliminated, the general force
balance conditions of the 3-RRR parallel manipulator are obtained by substituting
m31 = m32 = 0 in (2.48) which results in the ten force balance conditions:
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Fig. 2.31 a) Force balance configuration where the CoMs of links 12 and 22 are freely selected;
b) Force balance configuration for specific kinematic conditions where the CoMs of the platform
and of links 12, 22, and 42 are freely selected.
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Figure 2.30b shows a force balance configuration where the CoMs of the plat-
form and of link 12 are freely selected. It is also possible to obtain a force balance
configuration where the CoMs of links 12 and 22 are freely selected as illustrated in
Fig. 2.31a. Figure 2.31b shows a force balance configuration for the specific kine-
matics conditions θ11 = θ42 and θ5 = 0 (θ̇11 = θ̇42 and θ̇5 = 0) where the CoMs of
the platform and of links 12, 22, and 42 are freely selected.

2.3.5 2-RRR parallel manipulator
(6R six-bar mechanism and 5R five-bar mechanism)

Also the general force balance conditions of the planar 2-RRR parallel manipulator
(or 6R six-bar mechanism) in Fig. 2.32a can be obtained as a subset of the force
balance conditions of the 4-RRR manipulator. For instance when links 11, 12, 31,
and 32 in the configuration in Fig. 2.22 are eliminated, they are obtained by substi-
tuting m11 = m12 = m31 = m32 = 0 in (2.48) which results in the eight force balance
conditions:
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Fig. 2.32 a) Planar 2-RRR parallel manipulator (or 6R six-bar linkage) derived from Fig. 2.22
by eliminating arms 1 and 3; b) Force balance configuration when CoM of the platform is freely
selected.
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A force balance configuration is shown in Fig. 2.32b where the CoM of the plat-
form, which has reduced to a link, is freely selected. Figure 2.33a shows a force
balance configuration where the CoM of link 22 is freely selected. Figures 2.33b
and 2.33c show two force balance configurations for the specific kinematic con-
ditions that θ11 = θ42 and θ5 = 0 (θ̇11 = θ̇42 and θ̇5 = 0) where the CoMs of the
platform and of links 22, and 42 are freely selected.

The general force balance conditions of a 5R five-bar mechanism can be de-
rived from the force balance conditions of the 2-RRR parallel manipulator by, for
instance, reducing link 22 such that it disappears as shown in Fig. 2.34a. Then joints
B2 and C2 coincide. The force balance conditions of the 5R five-bar mechanism then
are obtained by substituting m22 = 0 and l22 = 0 in (2.54) which results in the six
force balance conditions:

m21e21 +m5l21
l6−e6

l6
= 0 m21 f21 −m5l21

f6
l6

= 0
m41e41 +m42l41 +m5l41

e6
l6

= 0 m41 f41 +m5l41
f6
l6

= 0
m42e42 +m5l42

e6
l6

= 0 m42 f42 +m5l42
f6
l6

= 0
(2.55)

A force balance configuration is shown in Fig. 2.34b in which the CoM of the
platform link is freely selected. When subsequently the force-balanced 5R five-bar
mechanism is reduced, for instance such that link 42 disappears and joints B4 and
C4 coincide, then the force-balanced 4R four-bar linkage in Fig. 2.13b is obtained.

l41

l42

l21

l22

(a) (b)

C2

B4

C4

f21

-f41

-f42

-e42

A2

-e21

A4

-e41

B2

f22e22

A4
C4

A2

B4

B2

l
21l

22

l
41

l
42

f22

e22

-f42

e42

-f41

-e41

f21

-e21

C2

A4

C4

A2

B4

B2

l
21l

22

l
41

l
42

f22

e22

-f42

e42

-f41

-e41

f21

-e21

C2

(c)

f6

e6
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2.4 Discussion and conclusion

In this chapter it was shown that the inherent force balance solutions of given mech-
anisms can be found with linear momentum equations in a generic and systematic
way. With the open chain method it was shown that force-balanced closed-chain
mechanisms can be derived quickly, but that the results are limited and dependent
on design choices. This is because the interaction among the open chains is not
considered. The force balance configuration of the delta robot in Fig. 2.12 has one
determined mass on a floating link, likely achieved with a counter-mass. Since in
practice often one of the arms of a delta robot exhibits relatively little motion when
its orientation is perpendicular to the main direction of the pick and place motion,
advantage is taken when this arm is the arm with the counter-mass on a floating link.

The method of linearly independent linear momentum was proposed for deriv-
ing the general force balance conditions of closed-chain mechanisms of which the
results are not limited and dependent on design choices. This was achieved by sub-
stituting the derivatives of the loop equations in the linear momentum equations of
the mechanism from which the force balance conditions are readily obtained. Appli-
cation of the method was illustrated for a 4R four-bar linkage with one closed loop
and a 4-RRR parallel mechanism with three closed loops. From the general force
balance conditions various force balance configurations are obtained by selecting
link CoM locations. It was shown that for each independent closed loop 1 link CoM
can be freely selected.

The linear momentum equations are suitable for an intuitive search for specific
kinematic conditions for which specific force balance configurations are obtained.
Specific kinematic conditions then are found which reduce the number of terms in
the linear momentum equations. From these specific kinematic conditions geomet-
ric conditions of the mechanism configuration are derived. For the 4-RRR paral-
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lel manipulator an advantageous force balance configuration was found with solely
counter-masses about the pivots with the base. Since this configuration is only per-
fectly force balanced for a non-rotating platform, while the manipulator still has
this DoF, this method is also suitable for deriving near-to-perfect force balance con-
figurations. In addition, it was also shown how various generally and specifically
reduced force-balanced mechanism configurations can be obtained as subsets.

As compared with the linearly independent vector method in [13], the method of
linearly independent linear momentum is simpler, especially for mechanisms with
multiple closed loops. This is because parameters related to the base and base pivots
are not considered with linear momentum where only parameters of moving ele-
ments are involved. The substitution of the derivatives of the loop equations in the
linear momentum requires significant effort, especially for multiple closed loops.
Since the method is straightforward and systematic, it is suitable for automation by
computer software.

The loop equations (2.42-2.44) were substituted in the linear momentum (2.39)
for sθ12θ̇12, cθ12θ̇12, sθ32θ̇32, and cθ32θ̇32. When they are substituted for sθ12θ̇12,
cθ12θ̇12, sθ42θ̇42, and cθ42θ̇42 the resulting linear momentum equations become sim-
pler than in (2.47). This is because of decoupling of parameters c5 and d5 for which
a general description of the platform joints is lost. The force balance configurations
that then are obtained are limited.

Extending the method of linearly independent linear momentum to spatial mech-
anisms can be challenging because of the products of sin() and cos() terms that are
difficult to handle. This however is a topic of further investigation.



Chapter 3
Principal vector linkages for inherent shaking
force balance

Abstract The method of principal vectors is investigated in this chapter for the
development of principal vector linkages. These linkages have the common center-
of-mass of all elements in an invariant point in at least one of the elements. When
pivoted about this point, the resulting linkages are force balanced for all motion
and can be applied for the synthesis of inherently force-balanced mechanism solu-
tions. It is shown that multi-DoF principal vector linkages, both planar and spatial,
consist of unions of pantograph mechanisms. With linear momentum equations and
equivalent linear momentum systems as a proposed method to represent the linear
momentum, their principal dimensions are calculated. It is shown that then each
degree-of-freedom is considered individually.

3.1 The 2-DoF pantograph linkage as a principal vector linkage

In this section it is shown how the 2-DoF pantograph linkage is considered a prin-
cipal vector linkage. An approach with linear momentum equations is proposed to
determine the principal dimensions of this force-balanced linkage from each DoF
individually.

Figure 3.1a depicts the pantograph mechanism of Fig. 2.20b with massless links
and two lumped masses mA and mB in points Q and R, respectively. About an arbi-
trary invariant point in one of the elements this parallelogram mechanism has 2-DoF
planar motion, defined with angular rotations θ1 and θ2. Joint S is an invariant link
point in both links SP1 and SP2 and is the common CoM of the linkage for all mo-
tion if mAa′′1 = mBa′′2 , where a′′1 and a′′2 are the distances SQ and SR, respectively.
From the similarity △P1SQ ∼ △P2RS it follows that a′′1/a′′2 = a′1/a1 = a2/a′2 = k
with constant k representing the scaling factor of the pantograph and with a1, a2, a′1,
and a′2 the distances P1A, P2A, P1Q, and P2R, respectively. This leads to the condi-
tions mAa′1 = mBa1 and mAa2 = mBa′2 for which joint S is the common CoM for all
motion.

53
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Points P1, P2, Q, and R can be described with respect to the common CoM in S
with vectors a1, a2, a′1, and a′2 as illustrated in Fig. 3.1b. These vectors are named
the principal vectors with which the principal vector linkage in Fig. 3.1a is defined.
The norms of these vectors a1, a2, a′1, and a′2 are the principal dimensions and P1
and P2 are the principal points in the principal elements P1A and P2A where A is
the principal joint. Links SP1 and SP2 will be referred to as the principal vector
links. The principal vector linkage is force-balanced about an invariant link point
for all motion. This link point is characterized as the common CoM and when made
stationary with respect to the base, for instance with a pivot in this point, a force-
balanced mechanism is obtained.

When the mass of all links is considered with a general CoM in each link, the
principal vector linkage in Fig. 3.2 is obtained. The CoM in each link is defined with
parameters pi and qi relative to the principal vectors as illustrated. A common ap-
proach to determine the conditions for which S is the common CoM of the complete
linkage is to develop the equations of the position of the CoM. It is also possible
to develop the linear momentum equations per DoF with which the motion of the
common CoM is described. These two approaches will be compared.

With S as origin of the xy-reference frame, the position of the common CoM of
the linkage in Fig. 3.2 can be written as
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common CoM of masses mA and mB is in S, which is an invariant point in both links SP1 and SP2;
(b) Principal vectors a1 and a2 describe the positions of the principal points P1 and P2 with respect
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rCoM = S+ m1

[
a2cθ2 − p1cθ1 −q1sθ1
a2sθ2 − p1sθ1 +q1cθ1

]
+m2

[
a1cθ1 − p2cθ2 +q2sθ2
a1sθ1 − p2sθ2 −q2cθ2

]
+

m3

[
p3cθ1 +q3sθ1
p3sθ1 −q3cθ1

]
+m4

[
p4cθ2 −q4sθ2
p4sθ2 +q4cθ2

]
(3.1)

with s() and c() as shorthand for sin() and cos(), respectively. For all values of the
time dependent parameters the equations have to be constant to have the common
CoM in S for all motion. After rearrangement of the equations by rewriting them in
terms of the four time dependent parameters, the four force balance conditions are
found as:

m1 p1 = m2a1 +m3 p3

m1q1 = m3q3 (3.2)
m2 p2 = m1a2 +m4 p4

m2q2 = m4q4

This procedure for this relatively simple linkage requires already a considerable
effort, especially for the rearrangement of the equations. With linear momentum
equations these conditions can be found more conveniently per DoF individually.
Figure 3.3a illustrates the relative motion of DoF 1 of the linkage for which θ̇2 = 0.
This can be regarded as link SP1 being fixed with link P1A solely rotating and link
P2A solely translating. The linear momentum L1 of this motion can be written with
respect to reference frame x1y1 which has the y1-axis aligned with the principal
vector a1 as illustrated. This results in

L1 =

[
−m1 p1 +m2a1 +m3 p3

m1q1 −m3q3

]
θ̇1 =

[
0
0

]
(3.3)

Similarly, the linear momentum L2 of the relative motion of DoF 2 with θ̇1 = 0,
which is illustrated in Fig. 3.3b, can be written with respect to reference frame x2y2
with the y2-axis aligned with principal vector a2 as illustrated. This results in
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balance conditions are readily obtained; a) DoF 1 with θ̇2 = 0 and link P2A solely translating; b)
DoF 2 with θ̇1 = 0 and link P1A solely translating.
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L2 =

[
−m2 p2 +m1a2 +m4 p4

−m2q2 +m4q4

]
θ̇2 =

[
0
0

]
(3.4)

This way, the conditions (3.2) for which S is the common CoM, for which the linear
momentum equations are zero for all motion, are readily found.

The main advantages of using linear momentum equations are that solely masses
that move are considered, that CoM parameters in translating and immovable ele-
ments do not appear, and that each DoF can be considered individually. The latter
means that as many equations are found as there are force balance conditions that
determine a multi-DoF principal vector linkage. Contrary, with the equations of the
CoM position only two equations are obtained for any planar multi-DoF linkage,
from which the force balance conditions can be challenging to obtain.

The use of relative reference frames for the linear momentum, which are aligned
with the rotating link as in Fig. 3.3, simplify the equations from which the general
force balance conditions are obtained. This can be shown when the linear momen-
tum of the single rotatable link in Fig. 3.4a is written from (2.2) and with respect to
fixed reference frame xAyA as

LA =

[
−m1e1 sinθ1 −m1 f1 cosθ1
m1e1 cosθ1 −m1 f1 sinθ1

]
θ̇1 =

[
−sinθ1 −cosθ1
cosθ1 −sinθ1

][
m1e1
m1 f1

]
θ̇1

=

[
−sinθ1 −cosθ1
cosθ1 −sinθ1

]
LB (3.5)

Here LB is the linear momentum of the same link but with respect to reference frame
xByB which is aligned with the link as illustrated in Fig. 3.4b. Since for force bal-
ance the linear momentum LA needs to be zero for any value of the time dependent
parameters, this implies that LB needs to be zero for any value of the time dependent
parameters. Hence, using relative reference frames leads to simpler equations for
deriving the force balance conditions.

For the formulation of the linear momentum it is proposed to first derive an
Equivalent Linear Momentum System (ELMS) of the motion under investigation.
Figure 3.5a shows an ELMS of the relative motion of DoF 1 in Fig. 3.3a, which
is a rotational motion about principal point P1. This is a reduced-mass model in

Fig. 3.4 To derive the general
force balance conditions, the
linear momentum can be
written with respect to (a)
an absolute reference frame
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a moving link (xByB). For
principal vector linkages the
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simplest equations. (a)
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which the moving masses have been projected onto a single element (the principal
element) such that its linear momentum with respect to the same reference frame
is equal. The ELMS in Fig. 3.5a is obtained when links P1A and SP2 are merged
with P1 and S coinciding. Since link P2A solely translates, mass m1 moves along a
circular trajectory with radius a1 as it is when projected in A. Figure 3.5b shows the
ELMS of the relative motion of DoF 2, which is a rotational motion about principal
point P2. Here links P2A and SP1 are merged with P2 and S coinciding and with m1
projected in A for equivalent linear momentum. A property of these ELMSs is that
the CoM in each reduced-mass model is in its principal point Pi, which shows an
alternative way to derive the force balance conditions.

From (3.2) the principal dimensions of the 2-DoF principal vector linkage in
Fig. 3.2 are calculated with

a1 =
m1 p1 −m3 p3

m2
a2 =

m2 p2 −m4 p4

m1
(3.6)

and from a′1/a1 = a2/a′2 = k principal dimensions a′1 and a′2 result in

a′1 =
m1 p1 −m3 p3

m1
a′2 =

m2 p2 −m4 p4

m2
(3.7)

with which the positions Q and R and the scaling factor k=m2/m1 of the pantograph
are known. Points Q and R will be referred to as similarity points of the principal
vector linkage. It is observed that the scaling factor does not depend on m3 and m4.
In chapter 4 (section 4.2) it is shown that it is not the only set of similarity points of
the pantograph and in chapter 7 it is shown that multiple principal vector linkages
can be combined by connecting them in these points and in S.
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3.2 Principal vector linkage of three principal elements in series

The pantograph mechanism can be considered a principal vector linkage of two
principal elements in series (P1A and P2A) with two principal vector links (SP1 and
SP2). In this section the principal vector linkage of three principal elements in series
is investigated. First it is shown that this linkage consists of a union of pantograph
mechanisms and its historical development is briefly noted. Subsequently the link-
age is generalized with a general CoM in each link and the principal dimensions
are derived with linear momentum equations and ELMSs. Also two kinematic vari-
ations of this principal vector linkage are investigated at the end.
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the auxiliary pantograph is parallel to the two incorporated pantographs; (e) Deduced from (d)
when parallelograms are united; (f) Specific dimensions for which the principal vector linkage is
obtained.
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3.2.1 Union of pantographs and Fischer’s linkage

The common CoM of three elements in series can be traced with pantograph link-
ages in various ways as illustrated in Fig. 3.6. In Fig. 3.6a it is shown how two
pantographs that are fully auxiliary can be applied. A first pantograph traces the
CoM of m1 and m3 and a second pantograph traces the CoM of m1 +m3 and m2,
which is the common CoM of the three elements. It is also possible (not shown) to
have a first pantograph trace the CoM of m1 and m2 or the CoM of m2 and m3. For
each of the three possibilities the resulting mechanism has eleven elements.

Figure 3.6b shows a solution with two pantographs of which one traces the CoM
of m1 and m2 and has two links incorporated in principal elements 1 and 2. The
second pantograph is fully auxiliary and traces the common CoM. This solution can
be applied in two different ways for which in each case the mechanism has nine
elements in total.

In Fig. 3.6c three pantographs are used to trace the common CoM. Two of them
have two links incorporated in the principal elements and one is fully auxiliary. The
two incorporated pantographs trace the CoM of m1 and part of m2, and the remaining
part of m2 and m3, respectively, while the auxiliary pantograph traces the common
CoM. The resulting mechanism has in total eleven elements.

From the configuration in Fig. 3.6c the principal vector linkage can be obtained
by unifying the three pantographs as will be explained graphically in three steps.
The first step is to have the auxiliary pantograph be parallel to the other two pan-
tographs for all motion of the linkage as shown in Fig. 3.6d. In this intermediate
result the kinematics of the auxiliary pantograph remain unchanged by an addi-
tional parallelogram at each side. This implies that point P2 is an invariant point in
link 2 and therefore the parallelograms at each side of the auxiliary pantograph can
be united to single parallelograms. This results in the configuration in Fig. 3.6e in
which two new incorporated pantographs appear. Without affecting the kinematics,
the dimensions of the links can be adapted to the configuration in Fig. 3.6f which is
a 3-DoF principal vector linkage with principal points P1, P2, and P3.

The new incorporated pantograph on the left traces with joint B1 the CoM of
m2 +m3 in K1 and m1. The new incorporated pantograph on the right traces with
joint B2 the CoM of m1 +m2 in K2 and m3. K1 and K2 represent, respectively, the
CoM of m3 considered in A2 and m2 and the CoM of m1 considered in A1 and m2.

Fischer’s linkage

The method of principal vectors was invented by the German physiologist, physi-
cist, and medical doctor Otto Fischer. He was involved in studying the motion of
living creatures (human beings and animals) and approached them as systems of
rigid bodies. To be able to calculate by hand the internal forces and moments of
muscles of bodies in motion, he was particularly interested in the division between
the absolute motion of the common CoM and the relative motion of the system with
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respect to the common CoM. He published various books considering these studies
of which the most elaborate one in 1906 [53].

For his studies, Fischer introduced a method to geometrically trace the CoM
of multiple jointed rigid elements. This method was given the name the method
of principal vectors by Lowen and Berkof [74]. He obtained and investigated the
principal vector linkage in Fig. 3.6f for mass-symmetric elements, i.e. elements of
which the CoM is on the line connecting the joints. In his solution therefore m2 is
on the line A1A2. The method to find the principal points he explained as that P1 is
found as the CoM of m2+m3 in A1 and m1, that P2 is found as the CoM of m1 in A1,
m3 in A2, and m2, and that P3 is found as the CoM of m1 +m2 in A2 and m3. Similar
explanations have been used later on referring to the three situations as augmented
bodies [105].

Fischer proved that his method works for a variety of simple and complex, open
and closed chains of any number of elements. In Ref. [53] examples are shown of a
chain of six elements and of a spatial system of twenty elements with multiple open
and closed chains.

A thorough investigation of Fischer’s work and of the historical development
of his method for mechanism and machine science is presented in Appendix A. A
short summary of the latter is presented here. Wittenbauer in 1923 developed Fis-
cher’s method by applying it for analysis of some more complex closed chains and
by illustrating the procedure of applying the method to parallel linkages and non-
symmetric links with general mass distributions [104]. Among others, Beyer [14]
and Federhofer [41] summarized the method while Kreutziger [69] and Wunderlich
[109] applied Fischer’s method to show that the motion of the CoM of a 4R four-bar
mechanism describes a curve similar to a coupler curve of the mechanism.

Fischer already related his method with shaking-force balancing and analyzed the
balancing of a crank-slider mechanism [53]. In 1957, Shchepetil’nikov [87] used
Fischer’s method and introduced the method of double contour transformation to
find auxiliary mechanisms that describe the motion of the CoM of a linkage, not be-
ing restricted to four-bar mechanisms as in [69] and [109]. His research was based
on the findings of Artobolevskii in 1951 [10] who had proposed an alternative for-
mulation of the principal vectors. These auxiliary mechanisms were force balanced
with additional counter-masses in order to make the CoM of the system stationary.

Hilpert in 1965 showed how in addition to Fischer’s principal vector linkage a
pantograph with counter-mass can be used to bring the CoM of the mechanism to
a specific stationary position in the base [61]. Shchepetil’nikov in 1975 extended
his method by applying it to systems of unsymmetrical elements, i.e. elements with
general CoM locations [88]. Among others, Wittenburg identified the concept of
principal vectors in multi-body dynamic equations by applying concepts of graph
theory, referring to the principal point as a Barycenter [105].

More recently, Agrawal et al. presented some articles, including notably Ref. [5],
in which they mounted Fischer’s principal vector linkage on the base with a pin in
the common CoM S. The common CoM then is stationary for all motion and the
mechanism has become a three-DoF force-balanced manipulator. Hereby they were
the first to consider the masses of all elements of the principal vector linkage. How-
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ever they limited their investigation to mass symmetric links for which they showed
experimentally that these masses can be included to have S be the common CoM of
all elements. Theoretically however, the problem of including these masses was not
solved since their formulation of the CoM position showed to be too complex and
with few physical meaning.

3.2.2 Generalization and calculation of principal dimensions with
Equivalent Linear Momentum Systems

When the principal vector linkage in Fig. 3.6f is generalized such that each of the
nine elements has a mass and a general CoM, then the principal vector linkage in
Fig. 3.7 is obtained. Since a pantograph is a principal vector linkage that can have
a general CoM in each element, also any combination of pantographs can have a
general CoM in each element. The principal element P1A1 has a mass m1 with its
CoM in S1 defined with p1 and q1 relative to P1 and line A1P1. The principal element
A1A2 has a mass m2 with its CoM in S2 defined with e2 and f2 relative to A1 and line
A1A2. The principal element A2P3 has a mass m3 with its CoM in S3 defined with
p3 and q3 relative to P3 and line A2P3. The principal vector links have a mass mi j of
which the CoM is described with pi j and qi j relative to their links as illustrated. With
respect to an arbitrary invariant link point the mechanism exhibits 3-DoF motion
which is described with angles θ1, θ2, and θ3 of the principal elements.

a
21

a
23

P1
P3

A1
B1

B2

S

p11

p31

p33 p13

p32

p12

q11

q31

q32

q12

q33 q13

a
1

a
1

S1

a
3

a
3

S3

p1

q1

p3

q3

b
21

b
23

q
1

q
3

q
2

A2

x

y

z

e2

s1

s3

P2

S2

f2

Fig. 3.7 A 3-DoF principal vector linkage of three principal elements in series jointed in A1 and
A2 and with a general CoM in each of the nine elements. Invariant link point and joint S is the
common CoM of the complete mechanism for all motion.
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The principal vectors on which this mechanism is based are depicted in Fig. 3.8.
These vectors describe the positions of the principal points P1, P2, and P3 relative to
the common CoM in S of which the norms are the principal dimensions a1, a21, a23,
and a3. These vectors also describe the positions of the principal joints A1 and A2.
When the principal point in each principal element is known, the complete mecha-
nism is determined for which the common CoM is in S for all motion.

Similar to the 2-DoF principal vector linkage in Fig. 3.2, the principal points of
this mechanism can be calculated with linear momentum equations of each DoF
individually. Figure 3.9 illustrates the relative motion of DoF 1 with θ̇2 = θ̇3 = 0.
This can be regarded as principal vector links SB1 and B1P1 being fixed while links
2, 3, 31, and 32 solely translate and links 1, 12, and 13 solely rotate. The linear
momentum L1 of this motion can be written with respect to reference frame x1y1,
which has the y1-axis aligned with the principal vector a1, as

L1 =

[
(m2 +m3 +m31 +m32)a1 +m12 p12 +m13 p13 −m1 p1

−m12q12 −m13q13 +m1q1

]
θ̇1 =

[
0
0

]
(3.8)

To facilitate the formulation of the linear momentum, an ELMS can be used which
for this motion is shown in Fig. 3.11a. This reduced-mass model is obtained by
merging links 1, 12, and 13 with B1 and S coinciding with P1, P2 and B2 coinciding
with A1, and with mass m2+m3+m31+m32 projected in A1. The linear momentum
then is written of this model rotating about P1, which therefore is the CoM of the
reduced-mass model.

Similarly, the linear momentum L3 of the relative motion of DoF 3 with θ̇1 =
θ̇2 = 0 is obtained. This motion is illustrated in Fig. 3.10 and can be regarded as
principal vector links SB2 and B2P3 being fixed while links 1, 2, 11, and 12 solely
translate and links 3, 32, and 33 solely rotate. The linear momentum L3 of this
motion can be written with respect to reference frame x3y3, which has the y3-axis
aligned with the principal vector a3, as
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Fig. 3.8 The principal vectors a1, a21, a23, and a3 describe the positions of the principal points
P1, P2, and P3 relative to the common CoM in S with which the principal vector linkage is fully
defined.
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L3 =

[
(m1 +m2 +m11 +m12)a3 +m32 p32 +m33 p33 −m3 p3

m32q32 +m33q33 −m3q3

]
θ̇3 =

[
0
0

]
(3.9)

The ELMS of this motion is shown in Fig. 3.11b. This reduced-mass model is
obtained by merging links 3, 32, and 33 with B2 and S coinciding with P3, P2 and B1
coinciding with A2, and with mass m1 +m2 +m11 +m12 projected in A2. The linear
momentum is written of this model rotating about P3, which therefore is the CoM
of the reduced-mass model.

From the linear momentum equations (3.8) and (3.9) already four force balance
conditions are obtained, which are

m1 p1 = (m2 +m3 +m31 +m32)a1 +m12 p12 +m13 p13 (3.10)
m1q1 = m12q12 +m13q13 (3.11)
m3 p3 = (m1 +m2 +m11 +m12)a3 +m32 p32 +m33 p33 (3.12)
m3q3 = m32q32 +m33q33 (3.13)

These are also the conditions for which P1 and P3 are the CoMs of their reduced-
mass model in the ELMSs in Fig. 3.11. The principal dimensions a1 and a3 are
obtained from (3.10) and (3.12) as

a1 =
m1 p1 −m12 p12 −m13 p13

m2 +m3 +m31 +m32
a3 =

m3 p3 −m32 p32 −m33 p33

m1 +m2 +m11 +m12
(3.14)

while q1 and q3 are obtained as
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Fig. 3.9 Relative motion of DoF 1 with θ̇2 = θ̇3 = 0 for which links 2, 3, 31, and 32 solely translate
and links 1, 12, and 13 solely rotate. To find P1 the linear momentum of this motion has to be zero.
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q1 =
m12q12 +m13q13

m1
q3 =

m32q32 +m33q33

m3
(3.15)

For a design it can be useful to have P1 and P3 defined with respect to lines s1
and s3 with angles α1 and α3, respectively, as illustrated in Fig. 3.7. By substitution
of p1 = s1 cosα1 − a1, p3 = s3 cosα3 − a3, q1 = s1 sinα1, and q3 = s3 sinα3, the
parameters for P1 and P3 become

a1 =
m1s1 cosα1 −m12 p12 −m13 p13

m1 +m2 +m3 +m31 +m32
α1 = sin−1

(
m12q12 +m13q13

m1s1

)
a3 =

m3s3 cosα3 −m32 p32 −m33 p33

m1 +m2 +m3 +m11 +m12
α3 = sin−1

(
m32q32 +m33q33

m3s3

)

and with m1s1 cosα1 =
√

m2
1s2

1(1− sin2 α1) and m3s3 cosα3 =
√

m2
3s2

3(1− sin2 α3)

a1 and a3 are found as

a1 =

√
m2

1s2
1 − (m12q12 +m13q13)2 −m12 p12 −m13 p13

m1 +m2 +m3 +m31 +m32
(3.16)
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Fig. 3.10 Relative motion of DoF 3 with θ̇1 = θ̇2 = 0 for which links 1, 2, 11, and 12 solely
translate and links 3, 32, and 33 solely rotate. To find P3 the linear momentum of this motion has
to be zero.
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Principal point P2 can be calculated from the linear momentum of the relative
motion of DoF 2 with θ̇1 = θ̇3 = 0, which is illustrated in Fig. 3.12. This can be
regarded as parallelogram SB1P2B2 being fixed while links 1 and 3 solely translate
and links 2, 11, and 31 solely rotate. For an enclosed principal element as A1A2,
more effort is needed to obtain the principal point and therefore an ELMS is help-
ful. The linear momentum of this motion can be divided such that it is written with
respect to the three reference frames illustrated in Fig. 3.12. When the linear mo-
mentum of m1 and m11 is written with respect to frame x21y21, the linear momentum
of m2 is written with respect to frame x22y22, and the linear momentum of m3 and
m31 is written with respect to frame x23y23, this results in the three sets of linear
momentum equations

L21 =

[
m1a21 +m11 p11

m11q11

]
θ̇2 L22 =

[
m2d2

0

]
θ̇2 (3.17)

L23 =

[
m3a23 +m31 p31

−m31q31

]
θ̇2

Figure 3.13 shows the ELMS of this motion. This reduced-mass model is obtained
when links 11 and 2 are merged with B1 and P2 coinciding, when links 31 and 2 are
merged with B2 and P2 coinciding, and with m1 projected in A1 and m3 projected
in A2. With respect to the three reference frames the linear momentum equations of
this reduced-mass model rotating about P2 are equal. Since the linear momentum of
the ELMS has to be zero, P2 is the CoM of the reduced-mass model.

In Fig. 3.13 it is shown how m2 can be described with respect to P2 with a par-
allelogram with sides da

2 and db
2 . These sides are aligned with lines P2N1 and P2N2,

respectively, where N1 is found as the CoM of m1 and m11 and N2 is found as the
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Fig. 3.11 ELMS of relative motion of (a) DoF 1 and (b) DoF 3 to facilitate the formulation of the
linear momentum. These reduced-mass models have their CoM in P1 and P3, respectively.
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CoM of m3 and m31 in the ELMS. This parallelogram can also be defined with lines
pa

2, qa
2, pb

2, and qb
2 as illustrated of which pa

2 is aligned with a21, pb
2 is aligned with

a23, qa
2 is normal to pa

2, and qb
2 is normal to pb

2. With the parallelogram the contribu-
tion of m2 to the force balance about P2 of either the left side of P2 along a21 and the
right side of P2 along a23 is determined. This can be understood when the graphi-
cal construction is regarded as a moving 2-DoF parallelogram linkage as illustrated
in Fig. 3.14a. Here P2A1 and P2A2 have become links rotating about P2 with θ̇21
and θ̇23, respectively. To have P2 be the common CoM, this linkage has to be force
balanced about P2.

The linkage in Fig. 3.14a is a pantograph and the calculations for which P2 is the
common CoM for all motion can be derived from the two relative DoFs individually
as in Fig. 3.3. The ELMS of each relative DoF is shown in Fig. 3.14b and 3.14c. In
Fig. 3.14b m2 is projected at distances pa

2 and qa
2 relative to P2 while in Fig. 3.14c m2

is projected at distances pb
2 and qb

2 relative to P2, as illustrated. Of both ELMSs the
linear momentum is zero when their CoMs are in P2 which is for the force balance
conditions

m2 pa
2 = m1a21 +m11 p11 m2qa

2 = m11q11
m2 pb

2 = m3a23 +m31 p31 m2qb
2 = m31q31

(3.18)

Since (da
2)

2 = (pa
2)

2 +(qa
2)

2 and (db
2)

2 = (pb
2)

2 +(qb
2)

2, the four linear conditions
can be reduced to the two nonlinear force balance conditions
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Fig. 3.12 Relative motion of DoF 2 with θ̇1 = θ̇3 = 0 for which links 1 and 3 solely translate and
links 2, 11, and 31 solely rotate. To find P2 the linear momentum of this motion has to be zero.
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(m2da
2)

2 = (m1a21 +m11 p11)
2 +(m11q11)

2

(m2db
2)

2 = (m3a23 +m31 p31)
2 +(m31q31)

2 (3.19)

The principal dimensions a21 and a23 are obtained from (3.18) as

a21 =
m2 pa

2 −m11 p11

m1
a23 =

m2 pb
2 −m31 p31

m3
(3.20)

while qa
2 and qb

2 are calculated as

qa
2 =

m11q11

m2
qb

2 =
m31q31

m2
(3.21)
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Fig. 3.14 The graphical construction in Fig. 3.13 can be considered a 2-DoF pantograph linkage
(a) from which two ELMSs (b) and (c) are derived similarly to the pantograph in Fig. 3.2. The
force balance conditions then are the conditions for which the ELMSs have their CoM in P2.
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In summary, the eight force balance conditions of the 3-DoF principal vector linkage
in Fig. 3.7, which define the principal dimensions for which the common CoM is in
joint S for all motion, are:

m1 p1 = (m2 +m3 +m31 +m32)a1 +m12 p12 +m13 p13
m1q1 = m12q12 +m13q13
m2 pa

2 = m1a21 +m11 p11
m2qa

2 = m11q11
m2 pb

2 = m3a23 +m31 p31
m2qb

2 = m31q31
m3 p3 = (m1 +m2 +m11 +m12)a3 +m32 p32 +m33 p33
m3q3 = m32q32 +m33q33

(3.22)

The location of P2 in A1A2 can be found with b21 and c2 with respect to A1 and
line A1A2 as illustrated in Fig. 3.13. Therefore, the linear momenta with respect
to the three reference frames x21y21, x22y22, and x23y23 need to be unified. To do
this, the ELMS in Fig. 3.13 is adapted, which can be done in various ways without
changing its linear momentum about P2. In Fig. 3.15 the mass m11 is projected in
both points I1 and J1 while m31 is projected in both points I2 and J2. J1 is located
at a distance q11 from P2 normal to line P2A1 while J2 is located at a distance q31
from P2 normal to line P2A2, as illustrated. The linear momentum equations of this
ELMS are equal to those of the ELMS in Fig. 3.13.

The ELMS in Fig. 3.15 can be adapted to the ELMS in Fig. 3.16. In this ELMS
the equivalent masses µ1 = m1+m11 p11/a21 in A1 and µ3 = m3+m31 p31/a23 in A2
combine m11 in I1 with m1 in A1 and m31 in I2 with m3 in A2, respectively. A mass
µ2 = m2 still is in S2 while masses ν1 = m11q11/a21 and ν3 = m31q31/a23 are in J1
and J2 which now are located at distances a21 and a23 from P2, respectively. When
these equivalent masses are substituted in (3.17) the linear momentum with respect
to each of the three reference frames writes
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Fig. 3.15 ELMS of the relative motion of DoF 2 which is adapted from Fig. 3.13 to have a mass
m11 in both points I1 and J1 and a mass m31 in both points I2 and J2.
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L21 =

[
µ1
ν1

]
a21θ̇2 L22 =

[
µ2
0

]
d2θ̇2 L23 =

[
µ3
−ν3

]
a23θ̇2 (3.23)

which are equal to the linear momenta obtained from the ELMS in Fig. 3.16. From
this ELMS the linear momentum L2 of the complete ELMS rotating about P2 can
be written with respect to reference frame x2y2, which has the x2-axis aligned with
A1A2 as

L2

θ̇2
= µ1

[
c2

−b21

]
+ν1

[
b21
c2

]
+µ2

[
c2 − f2

−(b21 − e2)

]
+

µ3

[
c2

−(b21 − l2)

]
−ν3

[
b21 − l2

c2

]
=

[
0
0

]
(3.24)

The force balance conditions for the relative motion of DoF 2 then are written in
terms of equivalent masses as:

(µ1 +µ2 +µ3)c2 +(ν1 −ν3)b21 −µ2 f2 +ν3l2 = 0 (3.25)
−(µ1 +µ2 +µ3)b21 +(ν1 −ν3)c2 +µ2e2 +µ3l2 = 0 (3.26)

from which b21 and c2 can be derived as

b21 =
(µ2 f2 −ν3l2)(ν1 −ν3)+(µ2e2 +µ3l2)(µ1 +µ2 +µ3)

(µ1 +µ2 +µ3)2 +(ν1 −ν3)2 (3.27)

c2 =
(µ2 f2 −ν3l2)(µ1 +µ2 +µ3)− (µ2e2 +µ3l2)(ν1 −ν3)

(µ1 +µ2 +µ3)2 +(ν1 −ν3)2

With µ1, µ2, µ3, ν1, and ν2 substituted, these conditions write
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Fig. 3.16 ELMS adapted from Fig. 3.15 with masses µ1 = m1 + m11 p11/a21 and µ3 = m3 +
m31 p31/a23 in A1 and A2, respectively, a mass µ2 = m2 in S2, and masses ν1 = m11q11/a21 and
ν3 = m31q31/a23 in J1 and J2, respectively.
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b21 =
(m2 f2−

m31q31
a23

l2)(
m11q11

a21
−m31q31

a23
)+(m2e2+m3l2+

m31 p31
a23

l2)(m1+m2+m3+
m11 p11

a21
+

m31 p31
a23

)

(m1+m2+m3+
m11 p11

a21
+

m31 p31
a23

)2+(
m11q11

a21
−m31q31

a23
)2

c2 =
(m2 f2−

m31q31
a23

l2)(m1+m2+m3+
m11 p11

a21
+

m31 p31
a23

)−(m2e2+m3l2+
m31 p31

a23
l2)(

m11q11
a21

−m31q31
a23

)

(m1+m2+m3+
m11 p11

a21
+

m31 p31
a23

)2+(
m11q11

a21
−m31q31

a23
)2

(3.28)

Since in these equations a21 =
√

b2
21 + c2

2 and a23 =
√
(l2 −b21)2 + c2

2 depend on
b21 and c2, in general no closed-form expressions for b21 and c2 are found. For some
specific conditions however they are obtained. For instance when λ1 = p11/a21,
λ2 = p31/a23, λ3 = q11/a21, and λ4 = q31/a23 are constants, then µ1 = m1+m11λ1,
µ2 = m2, µ3 = m3 +m31λ2, ν1 = m11λ3, and ν3 = m31λ4 become independent of
the principal dimensions. These conditions imply for instance that for λ1 =

1
2 , m11

is always halfway length a21. With these parameters substituted, b21 and c2 are cal-
culated from (3.28) as

b21 =
(m2 f2−m31λ4l2)(m11λ3−m31λ4)+(m2e2+m3l2+m31λ2l2)(m1+m2+m3+m11λ1+m31λ2)

(m1+m2+m3+m11λ1+m31λ2)2+(m11λ3−m31λ4)2

c2 =
(m2 f2−m31λ4l2)(m1+m2+m3+m11λ1+m31λ2)−(m2e2+m3l2+m31λ2l2)(m11λ3−m31λ4)

(m1+m2+m3+m11λ1+m31λ2)2+(m11λ3−m31λ4)2

(3.29)

For the specific condition ν1 = ν3 (m11λ3 = m31λ4), equations (3.27) reduce to

b21 =
µ2e2 +µ3l2

µ1 +µ2 +µ3
=

m2e2 +m3l2 +m31λ2l2
m1 +m2 +m3 +m11λ1 +m31λ2

(3.30)

c2 =
µ2 f2 −ν3l2

µ1 +µ2 +µ3
=

m2 f2 −m31λ4l2
m1 +m2 +m3 +m11λ1 +m31λ2

while for the specific condition ν1 = ν3 = 0 (λ3 = λ4 = 0) these equations reduce to

b21 =
µ2e2 +µ3l2

µ1 +µ2 +µ3
=

m2e2 +m3l2 +m31λ2l2
m1 +m2 +m3 +m11λ1 +m31λ2

(3.31)

c2 =
µ2 f2

µ1 +µ2 +µ3
=

m2 f2

m1 +m2 +m3 +m11λ1 +m31λ2

To go back to the linkage in Fig. 3.6f where the masses of the principal vector links
are zero and only the principal elements have mass, P2 is found with

b21 =
m2e2 +m3l2

m1 +m2 +m3
c2 =

m2 f2

m1 +m2 +m3
(3.32)

From Fig. 3.13, P2 can be found also by writing the location of m2 as

e2 = (a21 + pa
2)cosβ21 −qa

2 sinβ21 − pb
2 cosβ23 +qb

2 sinβ23 (3.33)
f2 = (a21 + pa

2)sinβ21 +qa
2 cosβ21 + pb

2 sinβ23 +qb
2 cosβ23
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where β21 ̸ P2A1A2 and β23 ̸ P2A2A1. With cosβ21 = b21/a21, sinβ21 = c2/a21,
cosβ23 = (l2 −b21)/a23, and sinβ23 = c2/a23 these equations become

e2 = (
a21 + pa

2
a21

+
pb

2
a23

)b21 − (
qa

2
a21

−
qb

2
a23

)c2 −
pb

2
a23

l2 (3.34)

f2 = (
a21 + pa

2
a21

+
pb

2
a23

)c2 +(
qa

2
a21

−
qb

2
a23

)b21 +
qb

2
a23

l2

from which b21 and c2 are obtained in terms of principal vectors as:

b21 =
(

a21+pa
2

a21
+

pb
2

a23
)(e2 +

pb
2

a23
l2)+(

qa
2

a21
− qb

2
a23

)( f2 −
qb

2
a23

l2)

(
a21+pa

2
a21

+
pb

2
a23

)2 +(
qa

2
a21

− qb
2

a23
)2

(3.35)

c2 =
(

a21+pa
2

a21
+

pb
2

a23
)( f2 −

qb
2

a23
l2)− (

qa
2

a21
− qb

2
a23

)(e2 +
pb

2
a23

l2)

(
a21+pa

2
a21

+
pb

2
a23

)2 +(
qa

2
a21

− qb
2

a23
)2

(3.36)
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Fig. 3.17 Investigation of the relative motion of DoF 1 by rotation of principal element 1 about
principal joint A1, where links 1, 12, and 13 solely rotate, links 11 and 33 solely translate, and the
other links are fixed. Here the linear momentum of the moving masses equals the linear momentum
of the total mass moving in S, from which the conditions for force balance are found.
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3.2.3 Method of rotations about the principal joints

The relative motions of DoF 1 and of DoF 3 can also be investigated as illustrated
for the relative motion of DoF 1 in Fig. 3.17. Here principal element 1 rotates about
the principal joint A1 while all other principal elements are fixed. While principal
element 1 and links 12, and 13 solely rotate, links 11 and 33 solely translate and all
other links are fixed. Since links 13 and 33 move, also joint S moves. This means
that to have S be the common CoM, the linear momentum of the moving masses has
to be equal to the linear momentum of the total mass mtot moving in S. The linear
momentum L1 of this motion can be written with respect to reference frame x1y1,
which has the y1-axis aligned with principal vector a1, as

L1 =

[
(m11 +m33)a1 +m1(a1 + p1)+m12(a1 − p12)+m13(a1 − p13)

m12q12 +m13q13 −m1q1

]
θ̇1

=

[
mtota1

0

]
θ̇1 (3.37)

with mtot = m1 +m2 +m3 +m11 +m12 +m13 +m31 +m32 +m33. It is verified that
the resulting force balance conditions (3.10) and (3.11) are also obtained this way.

3.2.4 Kinematic variations of the principal vector linkage

An alternative kinematic solution of a principal vector linkage with mass-symmetric
elements was proposed by Artobolevskii [10], see Fig. A.8a. When this solution is
generalized as a mechanism with a general CoM in each of the nine elements, the
mechanism in Fig. 3.18 is obtained where joint S is the common CoM. Here the
links are arranged such that P2 is not used as a joint and B2 is linked with A2 and is
a joint in link P1B1B2.

Similar to the linkage in Fig. 3.7, the locations of P1 and P3 can be derived from
the linear momentum of the relative motion of DoF 1 and DoF 3, respectively. For
the relative motion of DoF 1 with θ̇2 = θ̇3 = 0 links SB1, SB3, B2B3, and P1B1B2 can
be regarded as fixed while links P1A1, B2A2, and B3P3 solely rotate and links A1A2
and A2P3 solely translate. The linear momentum L1 with respect to reference frame
x1y1 then is written as

L1 =

[
(m2 +m3)a1 +m12 p12 +m13 p13 −m1 p1

−m12q12 −m13q13 +m1q1

]
θ̇1 =

[
0
0

]
(3.38)

For the relative motion of DoF 3 with θ̇1 = θ̇2 = 0 links SB3 and B3P3 can be re-
garded as fixed while links A2P3, B2B3, and B1S solely rotate and links P1A1, A1A2,
P1B1B2, and B2A2 solely translate. The linear momentum L3 then is written with
respect to reference frame x3y3 as
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L3 =

[
(m1 +m2 +m11 +m12)a3 +m32 p32 +m33 p33 −m3 p3

m32q32 +m33q33 −m3q3

]
θ̇3 =

[
0
0

]
(3.39)

To find P2, the ELMS of the relative motion of DoF 2 is shown in Fig. 3.19.
This ELMS is similar to the ELMS in Fig. 3.13 with as only difference a mass
m3 +m12 +m13 +m32 in A2. The derivation of the conditions for which the linear
momentum of the relative motion of DoF 2 is zero, i.e. for which P2 is the CoM of
this reduced-mass model, is similar to Fig. 3.14. Then together with L1 and L3, the
complete set of eight force balance conditions of the 3-DoF principal vector linkage
in Fig. 3.18 becomes:

m1 p1 = (m2 +m3)a1 +m12 p12 +m13 p13
m1q1 = m12q12 +m13q13
m2 pa

2 = m1a21 +m11 p11
m2qa

2 = m11q11
m2 pb

2 = (m3 +m12 +m13 +m32)a23 +m31 p31
m2qb

2 = m31q31
m3 p3 = (m1 +m2 +m11 +m12)a3 +m32 p32 +m33 p33
m3q3 = m32q32 +m33q33

(3.40)

From these conditions the principal dimensions a1, a21, a23, a3 are obtained.
Parameters b21 and c2 of the location of P2 with respect to line A1A2 can be found
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Fig. 3.18 Kinematic variation of a principal vector linkage by generalization of Artobolevski’s
solution of three principal elements in series with a general CoM in each of the nine elements and
S as common CoM.
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with (3.25) and (3.26) with µ1 =m1+m11 p11/a21, µ2 =m2, µ3 =m3+m12+m13+
m32 +m31 p31/a23, ν1 = m11q11/a21, and ν3 = m31q31/a23, comparable with the
ELMS in Fig. 3.16 and with the linear momentum L2 about P2 written as in (3.24).
They can also be derived from (3.35) and (3.36).

Another kind of kinematic variation of the principal vector linkage is obtained
with various designs of the principal vector links of which Fig. 3.20 illustrates a
few possibilities. Here links 1 and 11 are not pivoted in P1 but in T6, which is at a
distance t1 from P1 along P1A1, link 33 is pivoted with links 12 and 13 in T2 and T3,
which are at distances t2 and t3 with respect to B1 and T1 as illustrated, and link 31
is pivoted with link 32 in T4 and with link 3 in T5, which are at distances t4 and t5
with respect to B2 and P3 as illustrated. The common CoM in S is an invariant link
point in link 33 and is defined with o1 and o2 relative to T3 as illustrated.

Various other changes can be made. Important for any of them is that to maintain
a principal vector linkage, the mechanism needs to remain movable with the same
relative motions per DoF. This means that the parallelograms of the principal vectors
have to remain parallelograms for all motion. Therefore all elements still need to be
arranged kinematically as parallelograms.

To find P1, Fig. 3.21 shows the relative motion of DoF 1. With respect to Fig. 3.9,
here also links 11 and 33 move in pure translation while solely points P1, B1, and
T1 can be regarded as fixed points. This means that the common CoM in S is mov-
able too and that, similar to Fig. 3.17, the linear momentum of the moving masses
has to be equal to the linear momentum of the total mass moving in S. The linear
momentum L1 therefore is written with respect to reference frame x1y1 as

L1

θ̇1
=

[
(m2 +m3 +m31 +m32)a1 +m12 p12 +m13 p13 −m1 p1 +m11t1 −m33t2

−m12q12 −m13q13 +m1q1 +m33t3

]
=

[
−mtott2
mtott3

]
(3.41)

with mtot = m1 +m2 +m3 +m11 +m12 +m13 +m31 +m32 +m33.
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Fig. 3.19 ELMS of the relative motion of DoF 2 of the principal vector linkage in Fig. 3.18. P2 is
the CoM of this reduced-mass model with mass m3 +m12 +m13 +m32 in A2.
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Figure 3.22 shows the relative motion of DoF 3. As compared to the motion in
Fig. 3.10, here also link 31 moves in pure translation while solely points P3, B2,
and T1 can be regarded as fixed points. The linear momentum L3 of this motion is
written with respect to reference frame x3y3 as

L3

θ̇1
=

[
(m1 +m2 +m11 +m12)a3 +m32 p32 +m33 p33 −m3 p3 +m31t4

m32q32 +m33q33 −m3q3 −m31t5

]
=

[
mtoto1
mtoto2

]
(3.42)

From L1 and L3, four force balance conditions are derived as

m1 p1 = (mtot −m33)t2 +(m2 +m3 +m31 +m32)a1 +m12 p12 +m13 p13 +m11t1
m1q1 = (mtot −m33)t3 +m12q12 +m13q13
m3 p3 = −mtoto1 +(m1 +m2 +m11 +m12)a3 +m32 p32 +m33 p33 +m31t4
m3q3 = −mtoto2 +m32q32 +m33q33 −m31t5

The linear momentum of the relative motion of DoF 2 is equal to that of the
motion in Fig. 3.12. The ELMS of this motion therefore is equal to Fig. 3.13 and
the force balance conditions of DoF 2 are equal to (3.18). The eight force balance
conditions of the principal vector linkage in Fig. 3.20 then become:
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Fig. 3.20 Variations of the principal vector linkage in Fig. 3.7 where link 11 is pivoted with link
1 in T6, link 33 is pivoted with links 12 and 13 in T2 and T3, respectively, and link 31 is pivoted
with links 32 and 3 in T4 and T5, respectively. Invariant link point S is the common CoM of the
mechanism for all motion and is defined with o1 and o2 relative to T3.
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m1 p1 = (mtot −m33)t2 +(m2 +m3 +m31 +m32)a1 +m12 p12 +m13 p13 +m11t1
m1q1 = (mtot −m33)t3 +m12q12 +m13q13
m2 pa

2 = m1a21 +m11 p11
m2qa

2 = m11q11
m2 pb

2 = m3a23 +m31 p31
m2qb

2 = m31q31
m3 p3 = −mtoto1 +(m1 +m2 +m11 +m12)a3 +m32 p32 +m33 p33 +m31t4
m3q3 = −mtoto2 +m32q32 +m33q33 −m31t5

(3.43)

The principal dimensions a1 and a3 are calculated as

a1 =
m1 p1 − (mtot −m33)t2 −m12 p12 −m13 p13 −m11t1

m2 +m3 +m31 +m32
(3.44)

a3 =
m3 p3 +mtoto1 −m32 p32 −m33 p33 −m31t4

m1 +m2 +m11 +m12
(3.45)

Parameters b21 and c2 of the location of P2 with respect to line A1A2 can be found
from the ELMS in Fig. 3.16 with (3.25) and (3.26) with µ1 = m1 +m11 p11/a21,
µ2 = m2, µ3 = m3 +m31 p31/a23, ν1 = m11q11/a21, and ν3 = m31q31/a23 and they
can be calculated with (3.35) and (3.36).

P2

B2

s1

B1

SP1

P3

y1

x1

p12

q12

p13

q13q
1

A1

m3

m2

m12

m13

m31

m32
m11

m33

q
1

.a
1

t2

t3

p1

A2

t1 T2

T3

T1

T4

T5

T6

m1 q1
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3.3 Principal vector linkage of four principal elements in series

The theory in the previous section is also applicable to series of more than three
principal elements. In this section a 4-DoF principal vector linkage with four prin-
cipal elements in series is investigated, which is shown in Fig. 3.23 and has in total
sixteen elements with a general CoM. The common CoM of all elements is in joint
S for all motion.

As for three elements in series in Fig. 3.6f, also the principal vector linkage of
four elements in series can be considered a union of pantographs. It is illustrated in
Fig. 3.24a that the common CoM of a chain of four elements can be traced with in
total six pantographs. Three of these pantographs have each two links incorporated
in the principal elements as explained for Fig. 3.6c. With the procedure of Fig. 3.6d-
e-f the pantographs can be united such that the principal vector linkage in Fig. 3.24b
is obtained. Here the left incorporated pantograph traces the CoM of m1 and m2 +
m3 +m4 in K1, the centered incorporated pantograph traces the CoM of m1 +m2
in K2 and m3 +m4 in K3, and the right incorporated pantograph traces the CoM of
m1 +m2 +m3 in K4 and m4. K1 is derived as the CoM of m2 and m3 +m4 in A2, K2
is derived as the CoM of m1 in A1 and m2, K3 is derived as the CoM of m3 and m4
in A3, and K4 is derived as the CoM of m1 +m2 in A2 and m3.

Figure 3.25 shows the principal vectors on which the 4-DoF principal vector
linkage is based. These six vectors a1, a21, a23, a32, a34, and a4 describe the posi-
tions of principal points P1, P2, P3, and P4 relative to the common CoM in S. When
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Fig. 3.22 Relative motion of DoF 3 where link 3 rotates about P3, link 32 rotates about B2, and
link 33 rotates about T3 with P3, B2, and T3 as fixed points. All other links solely translate.
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these points are known, the principal vector linkage is fully determined with the six
principal dimensions a1, a21, a23, a32, a34, and a4.

Principal points P1 and P4 can be derived with the linear momentum of the rela-
tive motion of DoF 1 and of DoF 4, respectively, similarly as P1 and P3 in Fig. 3.7.
Both P2 and P3 can be obtained with an ELMS of their respective relative motion as
for P2 in Fig. 3.16.

The relative motion of DoF 1 is illustrated in Fig. 3.26 where principal vector
links SC1, C1B1, and B1P1 can be regarded as fixed while links 1, 12, 13, and 14
solely rotate and the other links solely translate. The linear momentum L1 of this
motion can be written with respect to reference frame x1y1 as

L1

θ̇1
=

[
mT 1a1 +m12 p12 +m13 p13 +m14 p14 −m1 p1
−m12q12 −m13q13 −m14q14 +m1q1

]
=

[
0
0

]
(3.46)
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with mT 1 = m2 +m3 +m4 +m21 +m22 +m31 +m41 +m42 +m43. The force balance
conditions are readily obtained as

m1 p1 = mT 1a1 +m12 p12 +m13 p13 +m14 p14 (3.47)
m1q1 = m12q12 +m13q13 +m14q14

from which the principal dimension a1 and q1 are calculated as

a1 =
m1 p1 −m12 p12 −m13 p13 −m14 p14

m2 +m3 +m4 +m21 +m22 +m31 +m41 +m42 +m43
(3.48)

q1 =
m12q12 +m13q13 +m14q14

m1

Similarly to (3.16), a1 can be found also by substituting m1 p1 = m1(s1 cosα1 −
a1) =

√
m2

1s2
1(1− sin2 α1)−m1a1 with sinα1 = q1/s1 as

a1 =

√
m2

1s2
1 − (m12q12 +m13q13 +m14q14)2 −m12 p12 −m13 p13 −m14 p14

m1 +m2 +m3 +m4 +m21 +m22 +m31 +m41 +m42 +m43
(3.49)

For the relative motion of DoF 4 principal vector links SC2, C2B3, and B3P4 can
be regarded as fixed while links 4, 42, 43, and 44 solely rotate and the other links
solely translate. The linear momentum L4 of this motion can be written with respect
to reference frame x4y4 as

L4

θ̇4
=

[
mT 4a4 +m42 p42 +m43 p43 +m44 p44 −m4 p4
m42q42 +m43q43 +m44q44 −m4q4

]
=

[
0
0

]
(3.50)

with mT 4 = m1 +m2 +m3 +m11 +m12 +m13 +m21 +m31 +m32. Here the force
balance conditions are readily obtained as
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Fig. 3.25 The 4-dof principal vector linkage in Fig. 3.23 is based on six principal vectors that
describe the positions of the principal points P1, P2, P3, and P4 relative to S.
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m4 p4 = mT 4a4 +m42 p42 +m43 p43 +m44 p44 (3.51)
m4q4 = m42q42 +m43q43 +m44q44

from which the principal dimension a4 and q4 are calculated as

a4 =
m4 p4 −m42 p42 −m43 p43 −m44 p44

m1 +m2 +m3 +m11 +m12 +m13 +m21 +m31 +m32
(3.52)

q4 =
m42q42 +m43q43 +m44q44

m4

By substituting m4 p4 =m4(s4 cosα4−a4)=
√

m2
4s2

4(1− sin2 α4)−m4a4 with sinα4 =

q4/s4, a4 can be found also as

a4 =

√
m2

4s2
4 − (m42q42 +m43q43 +m44q44)2 −m42 p42 −m43 p43 −m44 p44

m1 +m2 +m3 +m4 +m11 +m12 +m13 +m21 +m31 +m32
(3.53)

The relative motion of DoF 2 is illustrated in Fig. 3.27. Here points S, C1, C2, B1,
B2, and P2 can be regarded as fixed for which links 2, 11, 21, and 22 solely rotate and
the remaining movable links solely translate. As for the enclosed principal element
in Fig. 3.12, the linear momentum of this enclosed principal element can be written
with respect to the three reference frames x21y21, x22y22, and x23y23 as illustrated in
Fig. 3.27 as
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Fig. 3.26 Relative motion of DoF 1 where links SC1, C1B1, and B1P1 can be regarded as fixed
while links 1, 12, 13, and 14 solely rotate and the other links solely translate.
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L21 =

[
m1a21 +m11 p11

m11q11

]
θ̇2 L22 =

[
m2d2

0

]
θ̇2 (3.54)

L23 =

[
(m3 +m4 +m41 +m42)a23 +m21 p21 +m22 p22

−m21q21 −m22q22

]
θ̇2

or as

L21 =

[
µ1
ν1

]
a21θ̇2 L22 =

[
µ2
0

]
d2θ̇2 L23 =

[
µ3
−ν3

]
a23θ̇2 (3.55)

with equivalent masses µ1 = m1 +m11 p11/a21, µ2 = m2, µ3 = m3 +m4 +m41 +
m42 +(m21 p21 +m22 p22)/a23, ν1 = m11q11/a21, and ν3 = (m21q21 +m22q22)/a23.
The ELMS of this motions is shown in Fig. 3.28a and is similar to the ELMS in
Fig. 3.16. As in Fig. 3.14, the force balance conditions for this DoF can be found
with a parallelogram that is defined with pa

2, qa
2, pb

2, and qb
2 with which they result in

µ2 pa
2 = µ1a21 µ2qa

2 = ν1a21 (3.56)
µ2 pb

2 = µ3a23 µ2qb
2 = ν3a23

With µ1, µ2, µ3, ν1, and ν3 substituted, the force balance conditions become

m2 pa
2 = m1a21 +m11 p11

m2qa
2 = m11q11 (3.57)

m2 pb
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Fig. 3.27 Relative motion of DoF 2 where points S, C1, C2, B1, B2, and P2 are regarded as fixed
for which links 2, 11, 21, and 22 solely rotate and the remaining movable links solely translate.



82 3 Principal vector linkages for inherent shaking force balance

from which the principal dimensions a21 and a23 are calculated as

a21 =
m2 pa

2 −m11 p11

m1
a23 =

m2 pb
2 −m21 p21 −m22 p22

m3 +m4 +m41 +m42
(3.58)

The derivation of P3 is similar to the derivation of P2. For the relative motion of
DoF 3 the points S, C1, C2, B2, B3, and P3 can be regarded as fixed for which links
3, 31, 32, and 41 solely rotate and the remaining movable links solely translate. The
linear momentum of this motion can be written with respect to the three reference
frames x32y32, x33y33, and x34y34 as illustrated in the ELMS in Fig. 3.28b and write

L32 =

[
(m1 +m2 +m11 +m12)a32 +m31 p31 +m32 p32

m31q31 +m32q32

]
θ̇3 (3.59)

L33 =

[
m3d3

0

]
θ̇3 L34 =

[
m4a34 +m41 p41

−m41q41

]
θ̇3

or

L32 =

[
µ4
ν4

]
a32θ̇3 L33 =

[
µ5
0

]
d3θ̇3 L34 =

[
µ6
−ν6

]
a34θ̇3 (3.60)
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Fig. 3.28 Equivalent Linear Momentum Systems for the relative motion of (a) DoF 2 to find P2
and (b) DoF 3 to find P3. Principal points P2 and P3 are the CoMs of the reduced-mass models.
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with equivalent masses µ4 = m1 +m2 +m11 +m12 +(m31 p31 +m32 p32)/a32, µ5 =
m3, µ6 = m4+m41 p41/a34, ν4 = (m31q31+m32q32)/a32, and ν6 = m41q41/a34. The
force balance conditions for this DoF are found with the parallelogram defined with
pa

3, qa
3, pb

3, and qb
3 and result in

µ5 pa
3 = µ4a32 µ5qa

3 = ν4a32 (3.61)
µ5 pb

3 = µ6a34 µ5qb
3 = ν6a34

With µ4, µ5, µ6, ν4, and ν6 substituted, the force balance conditions result in

m3 pa
3 = (m1 +m2 +m11 +m12)a32 +m31 p31 +m32 p32 (3.62)

m3qa
3 = m31q31 +m32q32 (3.63)

m3 pb
3 = m4a34 +m41 p41 (3.64)

m3qb
3 = m41q41 (3.65)

from which the principal dimensions a32 and a34 are calculated as

a32 =
m3 pa

3 −m31 p31 −m32 p32

m1 +m2 +m11 +m12
a34 =

m3 pb
3 −m41 p41

m4
(3.66)

In summary, the twelve force balance conditions of the 4-DoF principal vector link-
age in Fig. 3.23, which define the principal dimensions for which the common CoM
is in joint S for all motion, are:

m1 p1 = (m2 +m3 +m4 +m21 +m22 +m31 +m41 +m42 +m43)a1+
m12 p12 +m13 p13 +m14 p14

m1q1 = m12q12 +m13q13 +m14q14
m2 pa

2 = m1a21 +m11 p11
m2qa

2 = m11q11
m2 pb

2 = (m3 +m4 +m41 +m42)a23 +m21 p21 +m22 p22
m2qb

2 = m21q21 +m22q22
m3 pa

3 = (m1 +m2 +m11 +m12)a32 +m31 p31 +m32 p32
m3qa

3 = m31q31 +m32q32
m3 pb

3 = m4a34 +m41 p41
m3qb

3 = m41q41
m4 p4 = (m1 +m2 +m3 +m11 +m12 +m13 +m21 +m31 +m32)a4+

m42 p42 +m43 p43 +m44 p44
m4q4 = m42q42 +m43q43 +m44q44

(3.67)

The parameters b21 and c2 of the location of P2 in A1A2 can be obtained from
the linear momentum L2 about P2, which is written as in (3.24). The force balance
conditions then become as in (3.25) and (3.26) and in (3.35) and (3.36).

The parameters b32 and c3 of the location of P3 in A2A3 can be obtained by
writing the linear momentum L3 of the ELMS in Fig. 3.28b about P3 with respect to
reference frame x3y3 as
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L3

θ̇3
= µ4

[
c3

−b32

]
+ν4

[
b32
c3

]
+µ5

[
c3 − f3

−(b32 − e3)

]
+

µ6

[
c3

−(b32 − l3)

]
−ν6

[
b32 − l2

c3

]
=

[
0
0

]
(3.68)

The force balance conditions for the individual motion of DoF 3 from which b32
and c3 can be calculated then result in terms of equivalent masses as:

(µ4 +µ5 +µ6)c3 +(ν4 −ν6)b32 −µ5 f3 +ν6l6 = 0 (3.69)
−(µ4 +µ5 +µ6)b32 +(ν4 −ν6)c3 +µ5e3 +µ6l6 = 0 (3.70)

It is also possible to write the position of m3 as

e3 = (a32 + pa
3)cosβ32 −qa

3 sinβ32 − pb
3 cosβ34 +qb

3 sinβ34 (3.71)
f3 = (a32 + pa

3)sinβ32 +qa
3 cosβ32 + pb

3 sinβ34 +qb
3 cosβ34

where β32 ̸ P3A2A3 and β34 ̸ P3A3A2. With cosβ32 = b32/a32, sinβ32 = c3/a32,
cosβ34 = (l3 −b32)/a34, and sinβ34 = c3/a34 these equations become

e3 = (
a32 + pa

3
a32

+
pb

3
a34

)b32 − (
qa

3
a32

−
qb

3
a34

)c3 −
pb

3
a34

l3 (3.72)

f3 = (
a32 + pa

3
a32

+
pb

3
a34

)c3 +(
qa

3
a32

−
qb

3
a34

)b32 +
qb

3
a34

l3

from which b32 and c3 are obtained in terms of principal vectors as:

b32 =
(

a32+pa
3

a32
+

pb
3

a34
)(e3 +

pb
3

a34
l3)+(

qa
3

a32
− qb

3
a34

)( f3 −
qb

3
a34

l3)

(
a32+pa

3
a32

+
pb

3
a34

)2 +(
qa

3
a32

− qb
3

a34
)2

(3.73)

c3 =
(

a32+pa
3

a32
+

pb
3

a34
)( f3 −

qb
3

a34
l3)− (

qa
3

a32
− qb

3
a34

)(e3 +
pb

3
a34

l3)

(
a32+pa

3
a32

+
pb

3
a34

)2 +(
qa

3
a32

− qb
3

a34
)2

(3.74)

In this section the principal vector linkage of four principal elements in series
was studied. The variations in the design of the principal vector linkage as in sec-
tion 3.2.4 are also applicable here. The common CoM can be an invariant point in
link SC1 or in link SC2, not necessarily being S. When another principal element
is added, a principal vector linkage of five principal elements in series is obtained.
Figure 3.29 shows a physical model of such a mechanism that was developed and
is shown in various poses. The principal elements have a length of 60 mm and are
multi-layered of 4 mm thick steel segments. The masses of the principal elements 1
to 5 were designed to be 120.61 g, 34.46 g, 17.23 g, 34.46 g and 120.61 g, respec-
tively, which varies to have the dimensions of the parallelograms not be too small.
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After production, these elements had a deviation of -1.27 g, 0.12 g, -0.12 g, -0.11 g,
and -1.29 g, respectively. The principal vector links are made of Ø 4 mm welding
rod with shiny copper-brown appearance and are dual for rigidity. The joint axles are
made of Ø 2 mm welding rod. The total mass of the moving elements after produc-
tion is 428.21-2.67=425.54 g of which the five principal elements weight together
327.37-2.67=324.7 g and the principal vector links weight together 100.84 g.

This model was, as all other models in this book, first simulated in Matlab and
designed in CAD-software SolidWorks in which the common CoM can be verified.
In experiments, the mechanism remains steady in every pose. The stick-slip friction
about the axle at the base was determined with measurement weights being 0.00045
Nm maximally. This implies that the maximal error of the common CoM with the
center of the joint with the base can be 0.00045Nm/(0.42821kg∗9.81ms−2) = 0.11
mm to have the mechanism still remain steady.

3.4 Principal vector linkage of four principal elements in parallel

Instead of multiple principal elements in series, principal vector linkages can also
consist of multiple principal elements jointed in a parallel manner. Figure 3.30
shows such a linkage with a central principal element 1 to which the three prin-
cipal elements 11, 21, and 31 are connected with revolute pairs, all having a general
CoM. The motion of this 4-DoF principal vector linkage is described with angles
θ11, θ21, θ31, and θ1 about the four principal points P11, P21, P31, and P1, respec-

5

2
3

CoM

1

4

Fig. 3.29 Physical model of a principal vector linkage of five principal elements in series, shown
in various poses. The principal elements are made of steel while the principal vector links are made
of shiny copper-brown Ø 4 mm welding rod. (see video at: www.kineticart.nl)

http://www.kineticart.nl/?page=acrobaat
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tively. The common CoM for all motion is in joint S of the principal vector links
and is drawn to float above principal element 1.

Also this principal vector linkage consists of a union of pantographs which is
illustrated in Fig. 3.31 where six pantographs together trace the common CoM in
S of which three have each two links incorporated in the principal elements and
the other three are fully auxiliary. When these pantographs are united the principal
vector linkage in Fig. 3.30 is obtained where new incorporated pantographs appear.
Pantograph B1P11A1P1 traces with B1 the CoM of m11 and m1 +m21 +m31 in K1.
Pantograph B2P21A2P1 traces with B2 the CoM of m21 and m1 +m11 +m31 in K2.
Pantograph B3P31A3P1 traces with B3 the CoM of m31 and m1+m11+m21 in K3. K1
is found as the CoM of m1, m21 in A2, and m31 in A3. K2 is found as the CoM of m1,
m11 in A1, and m31 in A3. K3 is found as the CoM of m1, m11 in A1, and m21 in A2.
For maximal clarity Fig. 3.30 is not made proportionate.

The six pantographs in Fig. 3.31 are centered about principal element 11, which
is one of the three solutions for this mechanism to trace the common CoM in S.
It is also possible to trace the common CoM with six pantographs centered about
principal elements 21 or 31 of which the results look similar. When the pantographs
of all three solutions together are united, this results in the planar principal vector
linkage in Fig. 3.32 which is overconstraint but movable. In this linkage also a gen-
eral CoM in each of the nineteen elements can be considered. Figure 3.33 shows the
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Fig. 3.30 Planar 4-DoF principal vector linkage with four principal elements of which the three
elements 11, 21, and 31 are arranged in parallel. The common CoM of the four elements for all
motion is in joint S, which is drawn to float above principal element 1.
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six principal vectors a11, a21, a31, a111, a121, and a131 on which this mechanism is
based and with which the positions of the principal points are described relative to
S.

To find the principal points and to calculate the principal dimensions a11, a21,
a31, a111, a121, and a131, the method of rotations about the principal joints A1, A2,
and A3 in section 3.2.3 is the clearest to illustrate. For simplicity therefore, the CoM
of all the principal vector links that are based on the vectors a11, a21, and a31 are
defined with parameters pi jk from opposite direction as compared to the linkages in
Figs. 3.7 and 3.23.

The relative motion of DoF 1 is illustrated in Fig. 3.34 where θ̇21 = θ̇31 = θ̇1 = 0
and points P1, A1, B2, B3, and C2 can be regarded as fixed while links 11, 112, 113,
114, and 115 solely rotate and links 111, 313, 314, 214, and 215 (i.e. link P11B1 and
rectangle SC3B1C1) solely translate. The linear momentum L111 of this motion can
be written with respect to reference frame x111y111 as

L111

θ̇11
=

[
mT 11a11 +m112 p112 +m113 p113 +m114 p114 +m115 p115 +m11(a11 + p11)
m112q112 +m113q113 +m114q114 +m115q115 −m11q11

]
=

[
mtota11

0

]
(3.75)

m21

A3

A2

S

m1

m11

m31

A1

Fig. 3.31 The common CoM in S of the four masses can be traced with six pantographs of which
three have each two links incorporated in the principal elements. Here the pantographs are centered
about principal element 11 and when united the linkage in Fig. 3.30 is obtained.
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with mT 11 = m111 +m313 +m314 +m214 +m215 and mtot = m1 +m11 +m21 +m31 +

∑5
k=1(m11k + m21k + m31k). Principal point P11 can be found with respect to line

S11A1 wheb a11 + p11 = s11 cosα11 and q11 = s11 sinα11 are substituted such that
the principal dimension a11 and angle α11 are calculated as

a11 =
m11s11 cosα11 +m112 p112 +m113 p113 +m114 p114 +m115 p115

mtot −m111 −m214 −m215 −m313 −m314
(3.76)

α11 = sin−1
(

m112q112 +m113q113 +m114q114 +m115q115

m11s11

)
Similarly the linear momentum L211 of the relative motion of DoF 2 and the

linear momentum L311 of the relative motion of DoF 3 are obtained. For the relative
motion of DoF 2 where θ̇11 = θ̇31 = θ̇1 = 0, points P1, A2, B1, B3, and C3 can be
regarded as fixed while links 21, 212, 213, 214, and 215 solely rotate and links 211,
113, 114, 314, and 315 (i.e. link P21B2 and rectangle SC1B2C2) solely translate. The
linear momentum can be written with respect to reference frame x211y211 as
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Fig. 3.32 Planar 4-DoF overconstraint principal vector linkage obtained from the union of the
three solutions of pantographs to trace the common CoM in S. Each of the nineteen elements has a
general CoM and angles θ11, θ21, θ31, and θ1 describe the four relative DoFs.
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L211

θ̇21
=

[
mT 21a21 +m212 p212 +m213 p213 +m214 p214 +m215 p215 +m21(a21 + p21)
m212q212 +m213q213 +m214q214 +m215q215 −m21q21

]
=

[
mtota21

0

]
(3.77)

with mT 21 = m211+m113+m114+m314+m315. Principal point P21 is found with re-
spect to line S21A2 where a21+ p21 = s21 cosα21 and q21 = s21 sinα21 are substituted
such that the principal dimension a21 and angle α21 are calculated as

a21 =
m21s21 cosα21 +m212 p212 +m213 p213 +m214 p214 +m215 p215

mtot −m211 −m314 −m315 −m113 −m114
(3.78)

α21 = sin−1
(

m212q212 +m213q213 +m214q214 +m215q215

m21s21

)
For the relative motion of DoF 3 where θ̇11 = θ̇21 = θ̇1 = 0 points P1, A3, B1,

B2, and C1 can be regarded as fixed while links 31, 312, 313, 314, and 315 solely
rotate and links 311, 213, 214, 114, and 115 (link P31B3 and rectangle SC2B3C3)
solely translate. The linear momentum of this motion can be written with respect to
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Fig. 3.33 The six principal vectors a11, a21, a31, a111, a211, and a311 describe the positions of
principal points P11, P21, P31, and P1 relative to S.
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reference frame x311y311 as

L311

θ̇31
=

[
mT 31a31 +m312 p312 +m313 p313 +m314 p314 +m315 p315 +m31(a31 + p31)
m312q312 +m313q313 +m314q314 +m315q315 −m31q31

]
=

[
mtota31

0

]
(3.79)

with mT 31 = m311+m213+m214+m114+m115. Principal point P31 is found with re-
spect to line S31A3 when a31+ p31 = s31 cosα31 and q31 = s31 sinα31 are substituted
such that the principal dimension a31 and angle α31 are calculated as

a31 =
m31s31 cosα31 +m312 p312 +m313 p313 +m314 p314 +m315 p315

mtot −m311 −m114 −m115 −m213 −m214
(3.80)

α31 = sin−1
(

m312q312 +m313q313 +m314q314 +m315q315

m31s31

)
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Fig. 3.34 Relative motion of DoF 1 with rotation about principal joint A1 and where θ̇21 = θ̇31 =
θ̇1 = 0. To find P11, the linear momentum of the moving masses equals the linear momentum of
the total mass moving in S.
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The relative motion of DoF 4 to find P1 is illustrated in Fig. 3.35 where θ̇11 =
θ̇21 = θ̇31 = 0. Here points P1, B1, B2, B3, C1, C2, C3, and S can be regarded as
fixed while links 1, 111, 211, and 311 solely rotate and links 11, 21, and 31 solely
translate. The linear momentum of this motion can be written with respect to the
four reference frames x10y10, x11y11, x12y12, and x13y13. Then the linear momentum
of m1 is written with respect to frame x10y10, of m11 and m111 with respect to frame
x11y11, of m21 and m211 with respect to frame x12y12, and of m31 and m311 with
respect to frame x13y13. The four sets of linear momentum equations then result in

L10 =

[
m1d1

0

]
θ̇1 L11 =

[
m11a111 +m111 p111

m111q111

]
θ̇1 (3.81)

L12 =

[
m21a121 +m211 p211

m211q211

]
θ̇1 L13 =

[
m31a131 +m311 p311

m311q311

]
θ̇1

The force balance conditions for the relative motion of DoF 4 can be found from
the ELMS of this motion in Fig. 3.36 where m1 is described relative to P1 with
a construction of three parallelograms as illustrated. This is an extension of the
construction with a single parallelogram in Fig. 3.13. The parallelograms are defined
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Fig. 3.35 Relative motion of DoF 4 where θ̇11 = θ̇21 = θ̇31 = 0 to find P1. Links 1, 111, 211, and
311 solely rotate and links 11, 21, and 31 solely translate.
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with da
1 along the line P1N1, db

1 along the line P1N2, and dc
1 along the line P1N3 in

opposite direction of P1. Here N1 is the CoM of m11 and m111, N2 is the CoM of m21
and m211, and N3 is the CoM of m31 and m311.

Similar to Fig. 3.14, Fig. 3.37 shows this construction as a 3-DoF pantographic
mechanism in which P1 is the common CoM. The force balance conditions of this
mechanism can be derived from the motion of each DoF individually, resulting in the
three ELMSs in Fig. 3.38. Also here m1 can be defined in each model with parame-
ters p{a,b,c}

1 and q{a,b,c}
1 with respect to the principal dimensions ai11, as illustrated.

P1 is found as the CoM of each of these reduced-mass models which results in the
six force balance conditions

m1 pa
1 = m11a111 +m111 p111 m1qa

1 = m111q111
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Fig. 3.36 ELMS of the relative motion of DoF 4 where P1 is the CoM of the reduced-mass model.
To obtain the force balance conditions, m1 is described with a construction of three parallelograms
with sides da

1 , db
1 , and dc

1 relative to P1 as illustrated, which is an extension of the construction with
a single parallelogram in Fig. 3.13.
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Fig. 3.37 The graphical construction in Fig. 3.36 can be regarded as a 3-DoF force-balanced par-
allelogram linkage from which the force balance conditions can be derived.
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m1 pb
1 = m21a121 +m211 p211 m1qb

1 = m211q211 (3.82)
m1 pc

1 = m31a131 +m311 p311 m1qc
1 = m311q311

In summary, from (3.75), (3.77), (3.79), and (3.82) the twelve force balance con-
ditions of the 4-DoF principal vector linkage in Fig. 3.32 are:

(mtot −mT 11 −m11)a11 = m112 p112 +m113 p113 +m114 p114 +m115 p115 +m11 p11
m11q11 = m112q112 +m113q113 +m114q114 +m115q115
(mtot −mT 21 −m21)a21 = m212 p212 +m213 p213 +m214 p214 +m215 p215 +m21 p21
m21q21 = m212q212 +m213q213 +m214q214 +m215q215
(mtot −mT 31 −m31)a31 = m312 p312 +m313 p313 +m314 p314 +m315 p315 +m31 p31
m31q31 = m312q312 +m313q313 +m314q314 +m315q315
m1 pa

1 = m11a111 +m111 p111
m1qa

1 = m111q111
m1 pb

1 = m21a121 +m211 p211
m1qb

1 = m211q211
m1 pc

1 = m31a131 +m311 p311
m1qc

1 = m311q311

(3.83)

with

mT 11 = m111 +m313 +m314 +m214 +m215
mT 21 = m211 +m113 +m114 +m314 +m315
mT 31 = m311 +m213 +m214 +m114 +m115
mtot = m1 +m11 +m21 +m31 +∑5

k=1(m11k +m21k +m31k)

(3.84)

With equivalent masses µ1 = m11 +m111 p111/a111, µ2 = m21 +m211 p211/a121,
µ3 = m31 +m311 p311/a131, µ4 = m1, ν1 = m111q111/a111, ν2 = m211q211/a121, and
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Fig. 3.38 ELMSs of the parallelogram linkage in Fig. 3.37 to derive the force balance conditions
where P1 is the CoM in each model.
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ν3 = m311q311/a131, the linear momenta equations in (3.81) are written as

L10 =

[
µ4
0

]
d1θ̇1 L11 =

[
µ1
ν1

]
a111θ̇1 (3.85)

L12 =

[
µ2
ν2

]
a121θ̇1 L13 =

[
µ3
ν3

]
a131θ̇1

and Fig. 3.39 shows the representing ELMS. When the location of P1 is described
with respect to A1 with parameters b1 along line A1A2 and c1 from line A1A2 and
the location of A3 with respect to A1 is defined similarly with parameters h1 and h2,
as illustrated, then the linear momentum L1 of the ELMS rotating about P1 can be
written with respect to reference frame x1y1 as

L1

θ̇1
= µ1

[
c1
−b1

]
+ν1

[
b1
c1

]
+µ2

[
c1

−(b1 − l1)

]
+ν2

[
b1 − l1

c1

]
+

µ3

[
c1 −h2

−(b1 −h1)

]
+ν3

[
b1 −h1
c1 −h2

]
+µ4

[
c1 − f1

−(b1 − e1)

]
=

[
0
0

]
(3.86)

where l1 is the distance between A1 and A2. The conditions from which b1 and c1
are calculated then become:

(µ1 +µ2 +µ3 +µ4)c1 +(ν1 +ν2 +ν3)b1 −ν2l1 −µ3h2 −ν3h1 −µ4 f1 = 0
(3.87)

−(µ1 +µ2 +µ3 +µ4)b1 +(ν1 +ν2 +ν3)c1 +µ2l1 +µ3h1 −ν3h2 +µ4e1 = 0
(3.88)
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Fig. 3.39 ELMS of the relative motion of DoF 4 where P1 is the CoM of the reduced-mass model.
P1 can be found with respect to A1 and line A1A2 with parameters b1 and c1.
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It is also possible to find P2 by writing the position of m1 from Fig. 3.36 and
Fig. 3.39 as:

e1 = (a111 + pa
1)cosβ1 −qa

1 sinβ1 − pb
1 cosβ2 −qb

1 sinβ2 + pc
1 cosβ3 +qc

1 sinβ3

f1 = (a111 + pa
1)sinβ1 +qa

1 cosβ1 + pb
1 sinβ2 −qb

1 cosβ2 − pc
1 sinβ3 +qc

1 cosβ3

with cosβ1 = b1/a111, sinβ1 = c1/a111, cosβ2 = (l1 − b1)/a121, sinβ2 = c1/a121,
cosβ3 = (b1 −h1)/a131, and sinβ3 = (h2 −c1)/a131. When substituted, these equa-
tions write

e1 = (
a111 + pa

1
a111

+
pb

1
a121

+
pc

1
a131

)b1 − (
qa

1
a111

+
qb

1
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+
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1
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1
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1
a131

h1 +
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1
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1
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+
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1
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+
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1
a131

)b1 −
qb

1
a121
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1
a131

h2 −
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1
a131

h1

from which b1 and c1 are obtained in terms of principal vectors as:

b1 =
(

a111+pa
1

a111
+

pb
1

a121
+

pc
1

a131
)(

pb
1

a121
l1 +

pc
1

a131
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1

a131
h2 + e1)

(
a111+pa

1
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+
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1
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+
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1
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+
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+
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+
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)(
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(3.89)
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+
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3.5 The spatial principal vector linkage

Fischer showed that the method of principal vectors also applies to spatial systems
[52, 53]. He analyzed a spatial system of twenty elements with spherical joints for
which the principal points were determined. He also analyzed the spatial motion of
two mass-symmetric links connected with a spherical joint, for which the kinetic en-
ergy equations were derived and with the lagrange equations of motions the inverse
dynamics of the linkage in motion were obtained based on the principal vectors.

In this section, Fischer’s theory is extended for the design of spatial force-
balanced principal vector linkages where each line of the graphical solution is a
real element with a general CoM. Also spatial principal vector linkages consist of
pantograph mechanisms which then are spatial too. Figure 3.40 shows such a spa-
tial force-balanced 3-DoF pantograph. This mechanism consists of four elements of
which the opposite elements remain parallel in each direction, i.e. elements 1 and
3 remain parallel and elements 2 and 4 remain parallel for all motion. Elements 1
and 3 also remain in the same plane as shown in Fig. 3.40b while this is not true for
elements 2 and 4.

The spatial motion of the spatial pantograph must not be confused with the spatial
motion of a planar pantograph mechanism. A 2-DoF planar pantograph mechanism
may be rotated out of its plane in its entirety as in [25], while in a spatial 3-DoF
pantograph the elements exhibit spatial motion relatively. The elements in a planar
2-DoF pantograph solely have planar motion relatively.

The force balance conditions of the spatial 3-DoF principal vector linkage of two
principal elements in series in Fig. 3.40 are equal to the force balance conditions of
the planar 2-DoF principal vector linkage in Fig. 3.2. To have the common CoM of
all elements be in the joint of element 3 and 4, the force balance conditions (3.2)
must hold within the plane of the front view in Fig. 3.40c. In addition, two conditions
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Fig. 3.40 Dimetric view (a), side view (b), and front view (c) of a force-balanced spatial 3-DoF
pantograph where opposite elements remain parallel in each direction for all motion. The condi-
tions for force balance are equal to the planar pantograph with two additional conditions.
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determine the out-of-plane location of the CoM with

m1q′1 = m3q′3 m2q′2 = m4q′4 (3.91)

These are comparable to the second and fourth equation in (3.2) where q′i defines
the CoM of element i with respect to the plane of the element through the joints, as
illustrated in Fig. 3.40a.

To find the right type of joints for the spatial pantograph to move correctly is
challenging. Since spherical joints or universal joints in each of the four connec-
tions cannot constrain the mechanism to move correctly, additional elements are
likely to be needed. Figure 3.41 shows a solution of a functional spatial pantograph,
which is applied as an arm of the delta robot for force balance. Parallelogram 1
represents principal element 1 and is connected with two spherical joints to both el-
ement 2 and 4. Parallelogram 3 represents element 3 and is also connected with two
spherical joints to both element 2 and 4. To synchronize the motions out of plane of
parallelogram 1 and parallelogram 3, a torsion bar 5 is jointed with revolute pairs on
each side of element 4 around the spherical joints. This is possible since elements 1
and 3 remain in the same plane for all motion.

With the spatial pantograph, the delta robot is force balanced as schematically
shown in Fig. 3.42a, where arm 1 is replaced with the spatial pantograph as com-
pared to Fig. 2.12. Mass m12 then is not determined for force balance and can freely
located. Countermass mBAL and m11 are applied to force balance arm 1 together

1

2

34

5

Fig. 3.41 Force-balanced Blueprint Automation delta robot of which one arm is a spatial 3-DoF
pantograph with a countermass on elements 2 and 4. Parallelogram 3 remains parallel to paral-
lelogram 1 with a torsion bar 5 on each side of the actuated element 4 with which the rotational
motions of parallelograms 1 and 3 are synchronized. (patented [100])



98 3 Principal vector linkages for inherent shaking force balance

with the platform and parts of the lower links of the other arms as illustrated in
Fig. 3.42b. The common CoM of these elements is in the pivot with the base. It is
possible to solely apply mBAL for force balance for which m11 is the mass of its link
only. However, applying m11 as a countermass as in Fig. 2.12 is dynamically advan-
tageous since it is located about a fixed pivot and the countermass mBAL is reduced
significantly.

In general, the synthesis of spatial principal vector linkages can be approached
as creating unions of spatial pantographs. Figure 3.43 shows how, similarly to the
synthesis of the planar 3-DoF principal vector linkage in Fig. 3.7, a spatial 6-DoF
principal vector linkage of three principal elements in series is obtained from a union
of three spatial pantographs. Also for this linkage it is required that, to remain a
principal vector linkage, the pantograph relations must be maintained for all motion.
This means that elements 1, 12, and 13 have to remain parallel in each direction for
all motions, which is also required for elements 3, 31, and 32, and for elements 2, 11,
and 31. For force balance about the joint of elements 13 and 33, the force balance
conditions (3.22) must hold within the plane of the front view of the mechanism
and in addition there are three conditions that determine the common CoM in the
out-of-plane location, which are similar to (3.91).

In Ref. [4] a spatial linkage was developed which is can be regarded as a re-
duced case of the spatial principal vector linkage in Fig. 3.43. Derived from com-
plex mathematics, their mechanism was developed with mass-symmetric links with
solely revolute pairs such that elements 1 and 3 in Fig. 3.43 were limited to move in
planes perpendicular to the front plane of element 2. Since for mass-symmetric links
rotational motion about their longitudinal axes does not affect the force balance, the
parallel relations of these elements do not need to be maintained.

To have the linkage in Fig. 3.43 move correctly with spherical or universal joints
in all connections, also here torsion bars could be used to synchronize the out-of-
plane motions of elements 1 and 12 and of elements 3 and 32. Then also elements
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Fig. 3.42 a) Schematic overview of the force balanced delta robot with arm 1 as a spatial panto-
graph in Fig. 3.41. b) Illustration of the force balance of each arm where mBAL and m11 balance
arm 1, the platform, and parts of the lower links of the other arms.
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2, 11, and 31 move correctly. To synchronize the motions of elements 13 and 33, a
more sophisticated solution is required.

It is also possible to obtain a force-balanced delta robot by transforming the com-
plete mechanism into a spatial principal vector linkage as illustrated in Fig. 3.44a.
Figure 3.44b shows how the mechanism is constructed of the spatial version of the
principal vector linkage in Fig. 3.32 with the mass of the upper links being dis-
tributed equivalently to their joints Ai and Bi. Then together with the solution pro-
posed by Hilpert, the CoM of the mechanism is an invariant point in the base with
a planar pantograph with countermass [61]. The choice of the right type of joints
still may be challenging, however advantage can be taken of the overconstraint de-
sign and of mass-symmetric links. When all links are mass symmetric, then with the
force balance conditions (3.83) this complete spatial linkage is force balanced.

3.6 Discussion and conclusion

In this section the method of principal vectors was investigated for the develop-
ment of principal vector linkages. While invented and applied mainly for dynamic
analysis, here the method is used as a fundament in the design of force-balanced
mechanism architectures. A principal vector linkage has the common CoM of all
elements in an invariant point in one of the links for all motion. When this point is
made stationary, principal vector linkages are shaking-force-balanced mechanisms.

It has been shown that both planar and spatial principal vector linkages consist of
unions of pantographs, with which the physical meaning of the principal points has
become clear. A more fundamental approach for the calculations of the principal
points and the principal dimensions, as compared to known from literature, was
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Fig. 3.43 Force-balanced 6-DoF spatial principal vector linkage of three principal elements in
series found as an union of three spatial pantographs. a) dimetric view; b) side view; c) top view.
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proposed and applied to multi-DoF planar serial and parallel chains of principal
elements. This approach is based on linear momentum equations, with which each
DoF of the linkage can be investigated individually. Equivalent linear momentum
systems were proposed to facilitate the calculations and to use different convenient
reference frames together.

The reduced mass models from the equivalent linear momentum systems are
comparable with the augmented bodies as found, among others, in [105]. Also this
concept is explained in literature as a trick, comparable to the original explanation of
the method of principal vectors. With the linear momentum equations however they
are obtained naturally. Including the mass of the principal vector links is challenging
with the explanation in literature. With linear momentum equations including these
masses is not a problem.

The principal vector linkages in this chapter can be extended by adding principal
elements either in series or in parallel. For the synthesis of inherently force-balanced
mechanisms, various solutions can be derived from principal vector linkages by
changing the link design and organisation, adding elements, exchanging links with
gears, replacing joints with other types of joints, etc. As long as the essential kine-
matic conditions are maintained, for all derived results inherent balance can be ob-
tained. Some kinematic variations of the principal vector links were investigated for
the 3-DoF principal vector linkage in Fig. 3.18 and Fig. 3.20. More of the synthesis
with principal vector linkages is investigated in chapter 7.
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Fig. 3.44 Force-balanced delta robot where the lower part of the robot is a spatial version of the
principal vector linkage in Fig. 3.32 and a planar pantograph is used to have the common CoM
stationary with respect to the base.



Chapter 4
Closed-chain principal vector linkages

Abstract Closed-chain principal vector linkages can be obtained by closing the
chain of principal elements of an open-chain principal vector linkage. This is named
here an open-chain method where the loop closure relations are not considered. It
is shown that the loop closure relations can be considered when a closed chain is
modeled as a mass equivalent principal open chain of one element less. Therefore
one of the elements in the closed chain is taken out and modeled with three equiva-
lent masses of which two are real and one is virtual. The remaining elements define
a principal vector linkage on which the three equivalent masses are projected to be-
come a mass equivalent principal open chain. This is shown for a closed chain of
four elements and is generalized for closed chains with a higher number of elements.

4.1 Approaches for synthesis of closed-chain principal vector
linkages

The principal vector linkages in chapter 3 consist of an open chain of principal el-
ements. It is also possible to find principal vector linkages that consist of closed
chains of elements. One approach is to simply close an open-chain principal vec-
tor linkage by connecting elements together with a movable joint. Comparable with
chapter 2, this is referred to as an open-chain method to derive closed-chain prin-
cipal vector linkages. Such an approach was used by Fischer and Wittenbauer for
analysis of closed kinematic chains with principal vectors [53, 104]. This method is
also applicable for synthesis of closed-chain principal vector linkages with a general
CoM in each of the elements, which is investigated in the first part of this chapter.

As in chapter 2, the loop closure relations are not considered with the open chain
method. Therefore general solutions, in this case a general closed-chain principal
vector linkage, can not be found with this method. Since the motion of one element
in a closed chain depends fully on the motion of the other elements, it can be de-
rived that the general solution of, for instance, a closed chain of four elements is an

101
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open-chain principal vector linkage of three principal elements of which the outer
elements are linked with a fourth element with movable joints.

To find the general solution, an approach is proposed where one element in a
closed chain is taken out and its mass is modeled with equivalent masses which
then are included in the calculations of the open-chain principal vector linkage of
the remaining elements. Therefore the equivalent masses are projected on the open
chain of principal elements which then is referred to as a mass equivalent principal
chain (MEPC). For elements with a CoM along the line through the two joints it is
well known that it can be modeled with two equivalent masses, one in each joint,
when their sum equals the mass of the element and their combined CoM is at the
same location as the element CoM, as was shown for the four-bar linkage in Fig. 2.7
and for the delta robot in Fig. 2.12. How to model an element with a general CoM
that is not along the line through the two joints however is not known.

In this chapter it is derived and shown that such an element can be modeled with
the two known equivalent masses in the joints and, in addition, a third equivalent
mass located elsewhere. Whereas the two equivalent masses in the joints determine
the element CoM along the line through the joints, the third equivalent mass deter-
mines the element CoM with respect to this line.
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Fig. 4.1 Closed-chain principal vector linkage of four principal elements obtained by closing an
open-chain principal vector linkage of four principal elements with revolute pairs in A0.
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4.2 Closed chain of four elements with Open Chain Method

Figure 4.1 shows a closed-chain principal vector linkage of four principal elements
that is obtained by closing the open-chain principal vector linkage in Fig. 3.23.
Elements 1 and 4 here have a common joint of revolute pairs in A0, which can be in
an arbitrary point in each of the two elements. The common CoM of all elements is
in joint S for all motion of the closed chain for the conditions (3.67).

As a specific case, it is possible to have the common CoM in S be an invariant
point in element A0A3. This is illustrated in Fig. 4.2 where the mechanism can be
said to be force balanced with respect to A0A3. This means that S can have rev-
olute pairs directly with A0A3 and since SC1 is parallel to P4A3 and therefore is
fixed in A0A3, also C1 can have revolute pairs directly with A0A3. Then the mecha-
nism becomes overconstraint but it remains movable since quadrilaterals C1B2P3A3,
A0P1B1C1, and A0A1A2A3 are similar of shape. The necessity of this similarity fol-
lows from the parallelograms P1A1P2B1, P2B2C1B1, and P3B2C2B3 that remain mov-
able too. The conditions of the similar quadrilaterals C1B2P3A3 ∼ A0P1B1C1 and
C1B2P3A3 ∼ A0A1A2A3 can be written as

a1
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=
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=
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=
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=
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(4.1)
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Fig. 4.2 For the similarity conditions C1B2P3A3 ∼ A0P1B1C1 and C1B2P3A3 ∼ A0A1A2A3, joint C1
and the common CoM in joint S are invariant points in A0A3 and the mechanisms is force balanced
with respect to A0A3.
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with a′1, a′′1 , and a′′3 the distances P1A0, A0C1, and A3C1, respectively, and with the
principal dimensions a1, a21, a23, a32, a34,and a4 calculated from (3.67). With length
li of each link, a′1, a′′1 , and a′′3 are calculated as:

a′1 =
a1a21

a23
=

a1a32

a34
a′′3 =

a1l4
l1

=
a23l4

l2
=

a34l4
l3

(4.2)

a′′1 =
a1a32l4
a34l1

=
a1a21l4
a23l1

=
a23a32l4

a34l2
=

a21l4
l2

=
a32l4

l3
=

a21a34l4
a23l3

with which the positions of A0 and C1 are determined. With point C1 defined
with o3 and o4 within A0A3 as illustrated, these parameters can be calculated from
the intersection of a circle with radius a′′3 and origin in A3 with a circle with radius
a′′1 and origin in A0. This results in

o3 =
l2
4 −a′′21 +a′′23

2l4
o4 =−

√
a′′23 −

(
l2
4 −a′′21 +a′′23

2l4

)2

(4.3)

After substituting a′′1 = a21l4/l2 and a′′3 = a23l4/l2, o3 and o4 become:
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Subsequently the location of the common CoM in S is found as

o1 = o3 +b4 o2 = o4 + c4 (4.5)

where parameters b4 and c4 define P4 with respect to A3 and line A3A0 as illustrated
in Fig. 4.1 with cosβ4 = b4/a4 and sinβ4 = c4/a4. To derive these parameters, the
position of m4 can be written with e4 and f4 relative to A3 and to line A3A0 as

e4 = (a4 + p4)cosβ4 −q4 sinβ4 = (1+
p4

a4
)b4 −

q4

a4
c4

f4 = (a4 + p4)sinβ4 +q4 cosβ4 = (1+
p4

a4
)c4 +

q4

a4
b4

Then b4 and c4 are obtained as:

b4 = a4
(a4 + p4)e4 +q4 f4

(a4 + p4)2 +q2
4

c4 = a4
(a4 + p4) f4 −q4e4

(a4 + p4)2 +q2
4

(4.6)

Together with (4.4) o1 and o2 then are written as:
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The location of P2 in A1A2 is obtained with (3.25-3.26) or (3.35-3.36) and the
location of P3 in A2A3 is obtained with (3.69-3.70) or (3.73-3.74). The location of
P1 can be defined with b1 and c1 relative to A1 and to line A1A0 as illustrated in
Fig. 4.1. With cosβ1 = b1/a1 and sinβ1 = c1/a1, the position of m1 can be written
with e1 and f1 relative to A1 and to line A1A0 as

e1 = (a1 + p1)cosβ1 −q1 sinβ1 = (1+
p1

a1
)b1 −

q1

a1
c1

f1 = (a1 + p1)sinβ1 +q1 cosβ1 = (1+
p1

a1
)c1 +

q1

a1
b1

from which b1 and c1 are found as:

b1 = a1
(a1 + p1)e1 +q1 f1

(a1 + p1)2 +q2
1

c1 = a1
(a1 + p1) f1 −q1e1

(a1 + p1)2 +q2
1

(4.8)
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Fig. 4.3 Configuration with massless principal vector links to derive the force balance conditions
of the general 4R four-bar linkage.
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When the masses of the principal vector links in Fig. 4.2 are zero and links SC2,
B2C2, B3C2, P3B3, and P4B3 are left out, the mechanism in Fig. 4.3 is obtained.
This mechanism is comparable with the 4R four-bar mechanism in Fig. 2.14b and it
will be shown that the obtained conditions are equal to the force balance conditions
(2.29).

With q1 = q4 = qa
2 = qb

2 = qa
3 = qb

3 = 0, the conditions (3.67) for which S is the
common CoM of the mechanism in Fig. 4.3 can be written as

p1 =
(m2 +m3 +m4)a1

m1
pa

2 =
m1a21

m2
pb

2 =
(m3 +m4)a23

m2
(4.9)

pa
3 =

(m1 +m2)a32

m3
pb

3 =
m4a34

m3
p4 =

(m1 +m2 +m3)a4

m4

When these equations are substituted in (3.35), (3.36), (3.73), (3.74), (4.6), and (4.8)
the parameters of the principal points are obtained as

b1 =
m1e1

m1 +m2 +m3 +m4
c1 =

m1 f1

m1 +m2 +m3 +m4

b21 =
m2e2 +(m3 +m4)l2
m1 +m2 +m3 +m4

c2 =
m2 f2

m1 +m2 +m3 +m4
(4.10)

b32 =
m3e3 +m4l3

m1 +m2 +m3 +m4
c3 =

f3

m1 +m2 +m3 +m4

b4 =
m4e4

m1 +m2 +m3 +m4
c4 =

m4 f4

m1 +m2 +m3 +m4

Parameters b1, c1, b32, and c3 can also be derived from the relations

b2
1 + c2

1 = a2
1 b2

32 + c2
3 = a2

32 (4.11)

(l1 −b1)
2 + c2

1 = a′21 (l3 −b32)
2 + c2

3 = a2
34

where the principal dimensions can be written from (4.1) to depend on a21 and a23
as

a1 =
a23l1

l2
a32 =

a21l3
l2

a′1 =
a21l1

l2
a34 =

a23l3
l2

(4.12)

for which they can be found as

b1 =
l1
2

(
1− a2

21

l2
2

+
a2

23

l2
2

)
c1 =

l1
2

√
4a2

23

l2
2

−
(

1−
a2

21

l2
2
+

a2
23

l2
2

)2

(4.13)

b32 =
l3
2

(
1+

a2
21

l2
2

−
a2

23

l2
2

)
c3 =

l3
2

√
4a2

21

l2
2

−
(

1+
a2

21

l2
2
−

a2
23

l2
2

)2

The principal dimensions a21 and a23 are calculated as
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a2
21 = b2

21 + c2
2 =

(m2e2 +(m3 +m4)l2)2 +m2
2 f 2

2
(m1 +m2 +m3 +m4)2 (4.14)

a2
23 = (l2 −b21)

2 + c2
2 =

(m1l2 +m2(l2 − e2))
2 +m2

2 f 2
2

(m1 +m2 +m3 +m4)2 (4.15)

which leads after substitution in (4.4), (4.5), and (4.13) to

b1 = l1
m1 +m2(1− e2

l2
)

m1 +m2 +m3 +m4
c1 = l1

m2
f2
l2

m1 +m2 +m3 +m4

b32 = l3
m2

e2
l2
+m3 +m4

m1 +m2 +m3 +m4
c3 = l3

m2
f2
l2

m1 +m2 +m3 +m4
(4.16)

o1 = l4
m1 +m2(1− e2

l2
)

m1 +m2 +m3 +m4
+b4 o2 =−l4

m2
f2
l2

m1 +m2 +m3 +m4
+ c4

Combining (4.10) and (4.16) then leads to the equations

m1(l1 − e1)+m2(1− e2
l2
)l1 = 0 m1 f1 −m2

f2
l2

l1 = 0
m3(l3 − e3)+m2

e2
l2

l3 = 0 m3 f3 − m2 f2
l2

l3 = 0
mtot(l4 −o1)−m2

e2
l2

l4 −m3l4 −m4(l4 − e4) = 0 mtoto2 +m2
f2
l2

l4 −m4 f4 = 0
(4.17)

with mtot = m1 + m2 + m3 + m4. These equations are equal to the force balance
conditions (2.29), taking into account that e1 is defined differently here.
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Fig. 4.4 Open-chain principal vector linkage of three principal elements and massless principal
vector links that is closed with a massless element as base.
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It is interesting to consider the case that also A0A3 is massless, i.e. m4 = 0. The
resulting mechanism can be regarded as the open-chain principal vector linkage in
Fig. 3.6f with three principal elements that is closed with a massless element (e.g.
a base of which the mass is not moving) and connected with revolute pairs in A0
and A3, as illustrated in Fig. 4.4. It can be said that S traces the common CoM of
m1, m2, and m3 with respect to A0A3 of which the relative trajectory is illustrated.
In literature this 4R four-bar linkage with massless principal vector links is found
as a graphical method for dynamic analysis of the motion of the common CoM of
closed-loop mechanisms [15, 53, 61, 69, 79, 87, 104].

Comparable with Fig. 4.3, S is an invariant point in A0A3 when the quadrilaterals
A0A1A2A3, A0P1B1S, and SB2P3A3 in Fig. 4.5 are similar for all motion. Then the
mechanism is force balanced with respect to A0A3. The conditions for the similari-
ties SB2P3A3 ∼ A0P1B1S and SB2P3A3 ∼ A0A1A2A3 can be written as

a1

a′1
=

a23

a21
=

a′3
a3

=
a′′3
a′′1

a1

l1
=

a23

l2
=

a′3
l3

=
a′′3
l4

(4.18)

with a′1, a′3, a′′1 , and a′′3 the distances P1A0, P3A3, SA0, and SA3, respectively, which
are derived as:

a′1 =
a1a21

a23
a′3 =

a3a23

a21
a′′1 =

a21l4
l2

a′′3 =
a23l4

l2
(4.19)
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Fig. 4.5 Configuration where common CoM S is an invariant point in A0A3 from which the force
balance conditions of the general 4R four-bar linkage are derived in terms of principal dimensions.
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The principal dimensions a1, a21, a23, and a3 are calculated from (3.22) as:

a1 =
m1 p1

m2 +m3
a21 =

m2 pa
2

m1
a23 =

m2 pb
2

m3
a3 =

m3 p3

m1 +m2
(4.20)

with pa
2 and pb

2 as in Fig. 3.13 and link lengths l1 and l3 derived as:

l1 =
a1l2
a23

l3 =
a3l2
a21

(4.21)

Together, these are the force balance conditions of the 4R four-bar linkage in
terms of principal dimensions since they define the locations of A0 and A3 for which
the common CoM in S is an invariant point in base A0A3. As can be noticed and as
expected, l4 does not affect these locations and can have any chosen value.

The parameters o1 and o2 can be found as the intersection of a circle with radius
a′′3 centered in A3 and a circle with radius a′′1 centered in A0, of which the equations
are equal to the equations for o3 and o4 in (4.3), respectively. After substituting a′′1
and a′′3 they are written in terms of the principal dimensions and dimensions l2 and
l4 as:

o1 =
l4
2

(
1+

a2
23 −a2

21

l2
2

)
o2 =− l4

2

√
4a2

23

l2
2

−
(

1+
a2

23 −a2
21

l2
2

)2

(4.22)

When the masses of all principal vector links are included, each with a general
CoM, then the linkage in Fig. 4.6 is obtained. Also here the similarity relations
SB2P3A3 ∼ A0P1B1S and SB2P3A3 ∼ A0A1A2A3 of the quadrilaterals hold, which
means that for the conditions in (4.18) also here S is the common CoM for all motion
and an invariant point in link A0A3 with o1 and o2 of (4.22) and with the principal
dimensions a1, a21, a23, and a3 from (3.22).

The principal dimensions a′1 and a′3 in (4.19) depend solely on the principal di-
mensions a1, a21, a23, and a3, comparable with the 2-DoF pantograph in Fig. 3.2.
In fact, they describe the positions of A0 and A3 which are the similarity points of
the 3-DoF open-chain principal vector linkage of three principal elements. Here the
scaling factor can be written from (4.18) as k = a′′1/a′′3 = a3l1/a1l3 and is constant
for any value of l4.

From the configuration in Fig. 4.6 also the general similarity points of the 2-DoF
pantograph can be derived. When m3 = m13 = m31 = m32 = m33 = 0, then a3 be-
comes zero with which joints S and B1 coincide and joints B2 and P2 coincide as
shown in Fig. 4.7. Then links 3, 13, 32, and 33 disappear. The result is a general
pantograph of which the joints A0 and A2 are the similarity points. Here the condi-
tions of similarity of the triangles SP2A2 ∼ A0P1S and SP2A2 ∼ A0A1A2 are obtained
from (4.18) as
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a1

a′1
=

a23

a21
=

a′′3
a′′1

a1

l1
=

a23

l2
=

a′′3
l4

(4.23)

The similarity points in Fig. 4.7 are general while in Fig. 3.2 a specific set of
similarity points of the 2-DoF pantograph was found. The principal dimensions
a′1, a′′1 , and a′′3 are obtained here as in (4.19). The scaling factor is obtained as
k = a′′1/a′′3 = a21/a23. In chapter 7 it is shown how the similarity points can be
used for synthesis of balanced mechanisms.

4.3 Mass equivalent model of a general element in a closed chain

The force balance conditions (2.29) or (4.17) of the four-bar linkage in Fig. 2.14b
or Fig. 4.5 can be represented graphically in an interesting way when the terms
ma

2 = m2(1− e2/l2), mb
2 = m2e2/l2, and mc

2 = m2 f2/l2 are considered equivalent
masses. Then when link 1 is investigated individually as in Fig. 4.8b, it shows that
from the equations that depend on e1 and f1, the common CoM of m1, ma

2 in A1,
and mc

2 in J1 is in A0. The location of J1 is at a distance l1 from A0, normal to line
A0A1 as illustrated. Similarly, link 3 can be investigated individually as in Fig. 4.8c
showing that from the equations that depend on e3 and f3 the common CoM of m3,
mb

2 in A2, and mc
2 in J3 is in A3. The location of J3 is at a distance l3 from A3, normal

A3A0

S

m1

m3

a
3

a
23P2

a
21

e2

B2

B1

o1

-o2

A1

A2

m2

f2

11

12

13

31

32

33

l
2

l
3

l
1

l
4

a’
1 a’’

3

a’’
1

p3

a’
3

a
1

P1

p1

P3

q3

q1

Fig. 4.6 The principal dimensions a′1 and a′3 determine together with l1 and l3 the locations of A0
and A3, which are the similarity points of the 3-DoF open-chain principal vector linkage of three
principal elements.
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to line A2A3 as illustrated. For link 4 the two force balance conditions that depend
on o1 and o2 can be represented with m1 +ma

2 in A0, m3 +mb
2 in A3, and mc

2 in J4 as
illustrated in Fig. 4.8d. The common CoM of these masses and m4 is in S and the
location of J4 is at a distance l4 from S, normal to line A0A3 as shown.

When link 2 is considered, it is shown in Fig. 4.8a that the common CoM of
equivalent masses ma

2 in A1, mb
2 in A2, and mc

2 in J2 is in the same point as the el-
ement CoM S2. The location of J2 is at a distance l2 from S2 normal to line A1A2
as illustrated. Since there are only equivalent masses involved, Fig. 4.8a can be
regarded a mass equivalent model of link 2. Equivalent masses ma

2 and mb
2 deter-

mine the location of the CoM along the line A1A2 with ma
2e2 = mb

2(l2 − e2) and are
the commonly known equivalent masses as used e.g. in Fig. 2.7, Fig. 2.12, and in
Ref. [108, 29]. Their sum equals the mass of the element as ma

2 +mb
2 = m2. Equiva-

lent mass mc
2 however is new and determines the location of the CoM normal to the

line A1A2 with mc
2l2 = (ma

2 +mb
2) f2.

With mc
2, the total mass of the mass equivalent model of link 2 in Fig. 4.8a is

ma
2 +mb

2 +mc
2 = m2(1+ f2/l2), which can be more or less than the real value of

m2. Since mc
2 does not represent a real mass, it is regarded a virtual equivalent mass

while ma
2 and mb

2 both are regarded a real equivalent mass.
The mass equivalent model in Fig. 4.8a can also be constructed as in Fig. 4.9a.

Here a virtual equivalent mass mc
2 is located in both J21 and J22 with J21 at

a distance s21 =
√

e2
2 + f 2

2 from S2 normal to line A1S2 and J22 at a distance
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Fig. 4.7 The general similarity points A0 and A2 of the 2-DoF pantograph obtained by reducing
the 3-DoF principal vector linkage in Fig. 4.6.
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s22 =
√
(l2 − e2)2 + f 2

2 from S2 normal to line S2A2, as illustrated. Since the CoM
of both virtual equivalent masses (2mc

2) is located along the line through S2 that
is normal to line A1A2 (the dashed line) and is located at a distance l2/2 from
S2, the conditions for mass equivalence are equal to the model in Fig. 4.8a with
mc

2e2 +mc
2(l2 − e2) = mc

2l2 = (ma
2 +mb

2) f2. Therefore Fig. 4.8a and Fig. 4.9a are
mass equivalent models of the same element.

Similarly, the model of link 4 in Fig. 4.8d can be constructed with two vir-
tual equivalent masses as shown in Fig. 4.9d. Here a virtual equivalent mass mc

2

in located in both J41 and J42 which are at a distance g1 =
√

o2
1 +o2

2 and g2 =√
(l4 −o1)2 +o2

2 from S, respectively, as illustrated.
In Fig. 4.9 the locations of the virtual equivalent mass in each of the models

show some general characteristics. The location of each virtual equivalent mass in
the mass equivalent model of link 2 in Fig. 4.9a can be characterized as: The virtual
equivalent mass (mc

2) is located at a distance from the CoM of the model (S2) that
is equal to the distance between the CoM of the model and the real equivalent mass
(distance s21 to ma

2 for J21 and distance s22 to mb
2 for J22) and normal to the line

through the CoM of the model and the real equivalent mass in the direction towards
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Fig. 4.8 a) Mass equivalent model of link 2 of the four-bar linkage in Fig. 2.14b with real equiva-
lent masses ma

2 and mb
2 and virtual equivalent mass mc

2 of which the CoM is in S2; b-c-d) Graphical
representation of the force balance conditions (2.29) for each link with the three equivalent masses
with which the CoM of each model is in A0, A3, and S, respectively.
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the positive side (side of positive f2) of the line through the two real equivalent
masses (line A1A2).

From the mass equivalent model then the location of the virtual equivalent mass
in Fig. 4.9b, 4.9c, and 4.9d can be derived as: The virtual equivalent mass (mc

2) is
located at a distance from the CoM of the model (A0 in Fig. 4.9b, A3 in Fig. 4.9c,
and S in Fig. 4.9d) that is equal to the distance between the CoM of the model and
the real equivalent mass (l1 to ma

2 in Fig. 4.9b, l3 to mb
2 in Fig. 4.9c, and g1 to mb

2 for
J41 and g2 to ma

2 for J42 in Fig. 4.9d) and normal to the line through the CoM of the
model and the real equivalent mass in the same direction as in the mass equivalent
model (same direction with respect to the line from the CoM of the model to the
real equivalent mass). For instance, the direction in Fig. 4.9b can be found when
the mass equivalent model in Fig. 4.9a is considered superimposed on link 1 with
their joint in A1 and subsequently rotated such that the lines from each CoM to
real equivalent mass are aligned. In Fig. 4.9c it is found when the mass equivalent
model in Fig. 4.9a is considered superimposed on link 3 with their joint in A2 and
subsequently rotated such that the lines from each CoM to real equivalent mass are
aligned.

Characteristic of the locations of the real equivalent masses in each of the models
in Fig. 4.9 is that (1) they are always in a joint; (2) they follow in the joints of the
subsequent elements in the loop, each along their own side (ma

2 appears in A1 and
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Fig. 4.9 Graphical representation of the force balance conditions (2.29) with (a) a mass equivalent
model of link 2 with a virtual equivalent mass mc

2 in both J21 and J22 and CoM in S2 and (d) link 4
with a virtual equivalent mass mc

2 in both J41 and J42 and CoM in S.
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A0, mb
2 appears in A2 and A3). In addition, from the models in Fig. 4.9 it can be said

that the mass equivalent model consists of two sets of a real and a virtual equivalent
mass which follow in the subsequent elements in the loop, each set along each of
the two sides of the loop.

To conclude so far:

A mass equivalent model of an element (i) with a general CoM (defined in
Fig. 4.10a with ei, fi, and li) can be constructed with two real equivalent
masses (ma

i and mb
i ) and a virtual equivalent mass (mc

i ) for the conditions:

ma
i ei = mb

i (li − ei) (4.24)
mc

i li = (ma
i +mb

i ) fi (4.25)
ma

i +mb
i = mi (4.26)

Such a mass equivalent model can be constructed as in Fig. 4.10b and as in
Fig. 4.10c, of which both will show their usefulness for the modeling of balanced
mechanisms.

4.4 Mass equivalent principal open chain of three elements

Figure 4.11 shows an inherent closed-chain principal vector linkage of an open-
chain principal vector linkage of three principal elements that is closed with an
element 4 with mass m4 which has joints with element 1 in A0 and with element
3 in A3. To derive the conditions for which the common CoM of the ten elements
is in joint S for all motion of the mechanism, element 4 is modeled with equiva-
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Fig. 4.10 An element with a generally located CoM (a), can be modeled mass-equivalently with
two real equivalent masses ma

i and mb
i and a virtual equivalent mass mc

i , of which the virtual
equivalent mass can be located (b) in Ji or (c) in both Ji1 and Ji2.



4.4 Mass equivalent principal open chain of three elements 115

lent masses as in Fig. 4.10b. Figure 4.12b shows the mass equivalent model where,
according the conditions (4.24-4.26), a real equivalent mass ma

4 = m4(1− e4/l4) is
located in A3, a real equivalent mass mb

4 = m4e4/l4 is located in A0, and a virtual
equivalent mass mc

4 = m4 f4/l4 is located in both J41 and J42, which are at a distance
a′′3 and a′′1 from S4 as illustrated.

With the three equivalent masses the mechanism in Fig. 4.11 can be analyzed as
an open-chain principal vector linkage without element 4 on which the equivalent
masses are projected. The result will be named a mass equivalent principal open
chain (MEPC) and is shown in Fig. 4.12a. When the description of the locations of
the equivalent masses in section 4.3 is followed, then the real equivalent masses ma

4
and mb

4 are located in the joints A3 and A0, respectively, while the virtual equivalent
masses are located about the principal points P1, P2, and P3, which are the CoMs
of the reduced mass models of the ELMS of each relative DoF. The directions of
the locations are as in the mass equivalent model of element 4 in Fig. 4.12b. It is
observed that one virtual equivalent mass follows the chain from the right side with
distances a′3, a23, and a1, while the second virtual equivalent mass follows the chain
from the left side with distances a′1, a21, and a3.

The ELMS of each DoF can be derived from the relative motions of the MEPC as
in Fig. 3.9, Fig. 3.10, and Fig. 3.12. Therefore an important property of the virtual
equivalent mass is that:
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A virtual equivalent mass acts as a real mass for rotational motion while it is
massless for translational motion of the element on which it is projected.

In other words, a virtual equivalent mass has linear momentum only when the
element on which it is projected rotates while for translational motion of the element
its linear momentum is zero.

With this property and when the mass of the principal vector links are not con-
sidered, the ELMS of each DoF of the MEPC in Fig. 4.12a becomes as in Fig. 4.13.
For DoF 1 the ELMS in Fig. 4.13b has m2 +m3 +ma

4 located in A1, mb
4 located

A0, and mc
4 located twice about P1. Since for this relative motion elements 2 and 3

solely translate, the virtual equivalent masses in these elements are zero. For DoF
3 the ELMS in Fig. 4.13c has m1 +m2 +mb

4 located in A2, ma
4 located A3, and mc

4
located twice about P3. Since for this relative motion elements 1 and 2 solely trans-
late, the virtual equivalent masses in these elements are zero. For DoF 2 the ELMS
in Fig. 4.13a has m1 +mb

4 located in A1, m3 +ma
4 located A2, and mc

4 located twice
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about P2. Since for this relative motion elements 1 and 3 solely translate, the virtual
equivalent masses in these elements are zero. Also in Fig. 4.13 the principal point is
the CoM of each mass model.

If the case is considered that in the limits a1 → 0 and a3 → 0, which means
that S becomes an invariant point in element A1A2 (and the principal vector linkage
becomes infinitely slim), then the ELMS of each DoF becomes as in Fig. 4.14. While
the ELMS of DoF 2 remains equal to Fig. 4.13a, the ELMS of DoF 1 and of DoF
3 changes where P1 and P3 coincide with A1 and A2, respectively. When compared
with Fig. 4.9, the results are similar. In both elements 1 and 3 one virtual equivalent
mass vanishes together with the masses in A1 and A2, respectively, and one virtual
equivalent mass is located at a distance equal to the link length from the principal
joints. To have the CoM of the models be in the principal joints A1 and A2, for this
case m1 and m3 cannot be located freely within their elements but need to be located
under the conditions in Fig. 4.9.

Since the ELMSs in Fig. 4.14b and Fig. 4.14c rotate about the principal joints A1
and A2, it is possible to analyze the MEPC with the initial principal vector linkage
with the method of rotations about the principal joints from section 3.2.3 where m1
and m3 are freely located within their elements. This will show to be the shortest
way to derive the force balance conditions for DoF 1 and DoF 3. Since then all
masses in element 1 are defined with respect to line A1A0, it is possible to combine
them as shown in Fig. 4.15b with m′

1 = m1 +mb
4 +mc

4 of which the CoM S′1 can be
defined with e′1 and f ′1 as illustrated, which are calculated as
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Fig. 4.13 The ELMS of each relative DoF of the MEPC has the two real equivalent masses located
in the joints and has two virtual equivalent masses that are located about the principal point.
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e′1 =
m1e1 +mb

4l1
m1 +mb

4 +mc
4

f ′1 =
m1 f1 −mc

4l1
m1 +mb

4 +mc
4

(4.27)

Similarly, the masses in element 3 can be combined as shown in Fig. 4.15c with
m′

3 =m3+ma
4+mc

4 of which the CoM S′3 can be defined with e′3 and f ′3 as illustrated,
which are calculated as

e′3 =
m3e3 +ma

4l3
m3 +ma

4 +mc
4

f ′3 =
m3 f3 −mc

4l3
m3 +ma

4 +mc
4

(4.28)

With these combined masses, the mechanism of the relative motion of DoF 1
with the masses of the principal vector links included is shown in Fig. 4.16. The
linear momentum of this motion can be written with respect to the x1y1-frame as

L1

θ̇1
=

m′
1(a1 + p1)+(m11 +m33)a1+

m12(a1 − p12)+m13(a1 − p13)
−m′

1q1 +m12q12 +m13q13

=

[
mtota1

0

]
(4.29)

with mtot = m1+m2+m3+m4+m11+m12+m13+m31+m32+m33 the total mass
of the mechanism. From these equations two force balance conditions are obtained
as
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Fig. 4.14 ELMSs when a1 → 0 and a3 → 0 for which S becomes an invariant point in A1A2. The
results show the projection of the virtual equivalent mass for analysis with method of rotations
about principal joints A1 and A2.
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m′
1 p1 = (m1 −m′

1 +m2 +m3 +m4 +m31 +m32)a1 +m12 p12 +m13 p13
m′

1q1 = m12q12 +m13q13
(4.30)

The relative motion for DoF 3 is shown in Fig. 4.17 of which the linear momen-
tum can be written with respect to the x3y3-frame as

L3

θ̇3
=

m′
3(a3 + p3)+(m31 +m13)a3+

m32(a3 − p32)+m33(a3 − p33)
m′

3q3 −m32q32 −m33q33

=

[
mtota1

0

]
(4.31)

with which the two force balance conditions for DoF 3 become

m′
3 p3 = (m1 +m2 +m3 −m′

3 +m4 +m11 +m12)a1 +m32 p32 +m33 p33
m′

3q3 = m32q32 +m33q33
(4.32)

The relative motion of DoF 2 is shown in Fig. 4.18. The ELMS for this motion
can be derived as shown in Fig. 4.19, where the linear momentum of m1, mb

4, m11,
and mc

4 in J21 are equal with respect to the x21y21-frame, the linear momentum of
m3, ma

4, m31, and mc
4 in J22 are equal with respect to the x23y23-frame, and the linear

momentum of m2 is equal with respect to the x2y2-frame for rotation of the ELMS
about P2.

Since the linear momentum of DoF 2 is zero for force balance, in Fig. 4.19 P2 is
the CoM of all masses. As compared to Fig. 3.13, here N1 is the CoM of m1 +mb

4
in A1, mc

4 in J21, and m11 and N2 is the CoM of m3 +ma
4 in A2, mc

4 in J22, and m31.
Both points lay on lines extended from the parallelogram between P2 and m2. The
conditions for force balance for this DoF can be found from Fig. 4.19 as in Fig. 3.14
and write
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m2 pa
2 = (m1 +mb

4)a21 +m11 p11 m2qa
2 = m11q11 +mc

4a21
m2 pb

2 = (m3 +ma
4)a23 +m31 p31 m2qb

2 = m31q31 +mc
4a23

(4.33)

With m′
1, m′

3, ma
4, mb

4, and mc
4 substituted in (4.30), (4.32), and in the four linear

conditions (4.33), the eight force balance conditions of the mechanism in Fig. 4.11
result in:

(m1 +m4(
e4
l4
+ f4

l4
))p1 = (m2 +m3 +m31 +m32 +m4(1− e4

l4
− f4

l4
))a1+

m12 p12 +m13 p13

(m1 +m4(
e4
l4
+ f4

l4
))q1 = m12q12 +m13q13

m2 pa
2 = (m1 +m4

e4
l4
)a21 +m11 p11

m2qa
2 = m11q11 +m4

f4
l4

a21

m2 pb
2 = (m3 +m4(1− e4

l4
))a23 +m31 p31

m2qb
2 = m31q31 +m4

f4
l4

a23

(m3 +m4(1− e4
l4
+ f4

l4
))p3 = (m1 +m2 +m11 +m12 +m4(

e4
l4
− f4

l4
))a3+

m32 p32 +m33 p33

(m3 +m4(1− e4
l4
+ f4

l4
))q3 = m32q32 +m33q33

(4.34)

Similarly to (3.16), with s′21 = e′21 + f ′21 and s′23 = e′23 + f ′23 a1 and a3 can be derived
as
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Fig. 4.16 Relative motion of MEPC DoF 1 of which the linear momentum of the moving masses
equals the linear momentum of the total mass moving in S to obtain two force balance conditions.
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a1 =

√
m′2

1 s′21 − (m12q12 +m13q13)2 −m12 p12 −m13 p13

m1 +m2 +m3 +m4 +m31 +m32
(4.35)

a3 =

√
m′2

3 s′23 − (m32q32 +m33q33)2 −m32 p32 −m33 p33

m1 +m2 +m3 +m4 +m11 +m12

and the location of P1 in A0A1 can be obtained similarly to (4.8) as:

b1 = a1
(a1 + p1)e′1 +q1 f ′1
(a1 + p1)2 +q2

1
c1 = a1

(a1 + p1) f ′1 −q1e′1
(a1 + p1)2 +q2

1
(4.36)

while the location of P3 in A2A3 is found as:

b3 = a3
(a3 + p3)e′3 +q3 f ′3
(a3 + p3)2 +q2

3
c3 = a3

(a3 + p3) f ′3 −q3e′3
(a3 + p3)2 +q2

3
(4.37)

With s′1 cos(α1) = a1 + p1, s′1 sin(α1) = q1, s′21 = (a1 + p1)
2 + q2

1, s′3 cos(α3) =
a3 + p3, s′3 sin(α3) = q3, and s′23 = (a3 + p3)

2 +q2
3, parameters b1, c1, b3, and c3 can

also be found as

b1 = a1
cos(α1)e′1 + sin(α1) f ′1

s′1
c1 = a1

cos(α1) f ′1 − sin(α1)e′1
s′1

(4.38)
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b3 = a3
cos(α3)e′3 + sin(α3) f ′3

s′3
c3 = a3

cos(α3) f ′3 − sin(α3)e′3
s′3

with

α1 = sin−1
(

m12q12 +m13q13

m′
1s′1

)
α3 = sin−1

(
m32q32 +m33q33

m′
3s′3

)
(4.39)

To find the location of P2 in A1A2 with b21 and c2, the linear momentum of the
ELMS in Fig. 4.19 rotating about P2 with respect to reference frame x2y2, which has
the x2-axis aligned with A1A2, is written as

L2

θ̇2
= µ21

[
c2

−b21

]
+ν21

[
b21
c2

]
+µ22

[
c2 − f2

−(b21 − e2)

]
+

µ23

[
c2

−(b21 − l2)

]
−ν23

[
b21 − l2

c2

]
=

[
0
0

]
(4.40)

with µ21 = m1 +mb
4 +m11 p11/a21, µ22 = m2, µ23 = m3 +ma

4 +m31 p31/a23, ν21 =
mc

4 +m11q11/a21, and ν23 = mc
4 +m31q31/a23. From these two equations the two

linear force balance conditions for DoF 2 become

(µ21 +µ22 +µ23)c2 +(ν21 −ν23)b21 −µ22 f2 +ν23l2 = 0 (4.41)
−(µ21 +µ22 +µ23)b21 +(ν21 −ν23)c2 +µ22e2 +µ23l2 = 0
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Fig. 4.18 Relative motion of MEPC DoF 2 of which the linear momentum of the moving masses
equals zero to obtain the remaining force balance conditions.
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from which b21 and c2 result in

b21 =
(µ22 f2 −ν23l2)(ν21 −ν23)+(µ22e2 +µ23l2)(µ21 +µ22 +µ23)

(µ21 +µ22 +µ23)2 +(ν21 −ν23)2 (4.42)

c2 =
(µ22 f2 −ν23l2)(µ21 +µ22 +µ23)− (µ22e2 +µ23l2)(ν21 −ν23)

(µ21 +µ22 +µ23)2 +(ν21 −ν23)2

With (3.35) and (3.36) b21 and c2 are found in terms of principal vectors too.
So far, the analysis of the relative DoFs in this section was considered with ro-

tations of DoF 1 and DoF 3 about the principal joints. If the individual motions of
DoF 1 and DoF 3 are analyzed with rotations about the principal points P1 and P3
as in Fig. 3.9 and Fig. 3.10, respectively, then the ELMS of each DoF becomes as
in Fig. 4.20. In addition to the ELMSs in Fig. 4.13b and Fig. 4.13c, for DoF 1 in
Fig. 4.20a m12 and m13 are included and for DoF 3 in Fig. 4.20b m32 and m33 are
included.

These ELMSs are of similar composition as the ELMS of DoF 2 in Fig. 4.19.
The force balance conditions for DoF 1 can be obtained from the linear momentum
equations of the ELMS in Fig. 4.20a rotating about P1, which writes with respect to
reference frame x1y1, which has the x1-axis aligned with A0A1, as

L1

θ̇1
= µ11

[
c1

b1 − l1

]
+µ12

[
c1 − f1
b1 − e1

]
+ν12

[
l1
0

]
+µ13

[
c1
b1

]
−ν13

[
−b1
c1

]
=

[
0
0

]
(4.43)

with µ11 =mb
4, µ12 =m1, µ13 =m2+m3+m31+m32+ma

4+m12 p12/a1+m13 p13/a1,
ν12 = mc

4, and ν13 = m12q12/a1 +m13q13/a1. The force balance conditions for DoF
3 can be obtained from the linear momentum equations of the ELMS in Fig. 4.20b
rotating about P3, which writes with respect to reference frame x3y3, which has the
x3-axis aligned with A2A3, as
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L3

θ̇3
= µ31

[
c3
−b3

]
+ν31

[
b3
c3

]
+µ32

[
c3 − f3
e3 −b3

]
+ν32

[
l3
0

]
+µ33

[
c3

l3 −b3

]
=

[
0
0

]
(4.44)

with µ31 = m1 +m2 +m11 +m12 +mb
4 +m32 p32/a3 +m33 p33/a3, µ32 = m3, µ33 =

ma
4, ν31 = m32q32/a3 + m33q33/a3, and ν32 = mc

4. From these linear momentum
equations and (4.40) the force balance conditions of the mechanism in Fig. 4.11 are
obtained with analysis of the relative motions about the principal points as:

(µ11 +µ12 +µ13)c1 +ν13b1 −µ12 f1 +ν12l1 = 0
(µ11 +µ12 +µ13)b1 −ν13c1 −µ12e1 −µ11l1 = 0

(µ21 +µ22 +µ23)c2 +(ν21 −ν23)b21 −µ22 f2 +ν23l2 = 0 (4.45)
−(µ21 +µ22 +µ23)b21 +(ν21 −ν23)c2 +µ22e2 +µ23l2 = 0

(µ31 +µ32 +µ33)c3 +ν31b3 −µ32 f3 +ν32l3 = 0
−(µ31 +µ32 +µ33)b3 +ν31c3 +µ32e3 +µ33l3 = 0

From these conditions b1 and c1 can be derived as

b1 =
(µ12 f1 −ν12l1)ν13 +(µ12e1 +µ11l1)(µ11 +µ12 +µ13)

(µ11 +µ12 +µ13)2 +ν2
13

(4.46)

c1 =
(µ12 f1 −ν12l1)(µ11 +µ12 +µ13)− (µ12e1 +µ11l1)ν13

(µ11 +µ12 +µ13)2 +ν2
13

and b3 and c3 can be derived as
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b3 =
(µ32 f3 −ν32l3)ν31 +(µ32e3 +µ33l3)(µ31 +µ32 +µ33)

(µ31 +µ32 +µ33)2 +ν2
31

(4.47)

c3 =
(µ32 f3 −ν32l3)(µ31 +µ32 +µ33)− (µ32e3 +µ33l3)ν31

(µ31 +µ32 +µ33)2 +ν2
31

To validate the results, the principal vector linkage in Fig. 4.11 was modeled with
the multi-body dynamic simulation software package Spacar1. With Matlab the
parameters of the mechanism were calculated as in Table. 4.1. The parameters in the
first four columns were chosen with which the parameters in the last column were
calculated. With SpaScripting the parameters were transformed from Matlab
into a dynamic model in Spacar in which the only connection with the base is a
pivot in S.

The simulation of the dynamic model is illustrated in Fig. 4.21 with two poses
of the mechanism. For the simulation time of 0.5 seconds a torque τ1 = 50cos(4πt)
Nm was applied to element SB1 and a torque τ2 =−τ1 was applied to element SB2.
The dynamics were solved with solver ODE45 (Dormand-Prince) with a maximal
step size of 0.0001 s and with a relative tolerance of 1e−12 m. The reaction forces in
the pivot with the base were recorded and are displayed in Fig. 4.22. These shaking
forces are expected to be zero for force balance and show an error which is about the
computation accuracy. Figure 4.23 shows the linear momentum of the mechanism
in both x and y−direction which are also expected to be zero for force balance and
have an error which is about the computation accuracy.

In the remainder of this section it is shown that when S of the mechanism in
Fig. 4.11 is an invariant point in A0A3 as in Fig. 4.24, from the force balance condi-
tions (4.34) the force balance conditions (2.29/4.17) of the 4R four-bar mechanism
can be derived.

As in Fig. 4.5, for movability of the mechanism in Fig. 4.24 the quadrilater-
als A0A1A2A3, A0P1B1S, and SB2P3A3 are similar with the conditions (4.18). With
massless principal vector links and q1 = q3 = 0, the force balance conditions (4.34)
can be rewritten as

Table 4.1 Parameters of the principal vector linkage in Fig. 4.11 for simulation

[m] [kg] [m] [m] [m]
l1 = 1.0 m1 = 2.10 e1 = 0.69 f1 = 0.21 a1 = 0.2206
l2 = 3.0 m2 = 3.00 e2 = 1.80 f2 = 0.93 b1 = 0.2161
l3 = 2.0 m3 = 2.20 e3 = 1.30 f3 = 0.84 c1 = 0.0439
l4 = 3.2 m4 = 1.10 e4 = 1.312 f4 = 0.10 a21 = 1.6838

m11 = 0.20 p11 = 1.00 q11 = 0.20 a23 = 1.3770
m12 = 0.10 p12 = 0.12 q12 = 0.09 b21 = 1.6565
m13 = 0.11 p13 = 0.10 q13 = 0.10 c2 = 0.3018
m31 = 0.20 p31 = 0.85 q31 = 0.20 a3 = 0.5140
m32 = 0.105 p32 = 0.25 q32 = 0.08 b3 = 0.4734
m33 = 0.09 p33 = 0.27 q33 = 0.10 c3 = 0.2004

1 http://www.spacar.nl/
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p1 =
(m2 +m3 +m4(1− e4
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− f4
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e4
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+ f4
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)
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(4.48)

pb
2 =

(m3 +m4(1− e4
l4
))a23

m2
qb

2 =
m4

f4
l4

a23

m2

When these equations are substituted in (3.35), (3.36), (4.36), and (4.37), parameters
b1, c1, b21, c2, b3, and c3 become

b1 =
m1e1 +m4

e4
l4

l1
m1 +m2 +m3 +m4

c1 =
m1 f1 −m4

f4
l4

l1
m1 +m2 +m3 +m4
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m1 +m2 +m3 +m4
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(4.49)
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l4
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m3 f3 −m4
f4
l4

l3
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Parameters b1, c1, b3, and c3 can also be derived from the relations

b2
1 + c2

1 = a2
1 b2

3 + c2
3 = a2

3 (4.50)

(l1 −b1)
2 + c2

1 = a′21 (l3 −b3)
2 + c2

3 = a′23
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Fig. 4.21 Dynamic simulation in Spacar of the mechanism in Fig. 4.11 where S is a pivot with
the base. A torque τ1 was applied to element SB1 and a torque τ2 was applied to element SB2.
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where the principal dimensions can be written from (4.18) to depend on a21 and a23
as

a1 =
a23l1

l2
a3 =

a21l3
l2

a′1 =
a21l1

l2
a′3 =

a23l3
l2

(4.51)

for which these parameters result in
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21
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The principal dimensions a21 and a23 are calculated as

Fig. 4.22 The resulting shak-
ing forces in pivot S show
that the mechanism is force
balanced about S.
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Fig. 4.23 The linear momentum in both x and y−direction, which were calculated from the simu-
lated motion, show force balance about S.
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which leads after substitution in (4.22) and (4.52) to
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Combining (4.52) and (4.54) then leads to the equations
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Fig. 4.24 With the common CoM S of the four elements as invariant point in element A0A3, the
linkage in Fig. 4.11 represents a generally force-balanced four-bar linkage.
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with mtot = m1 +m2 +m3 +m4. It is verified that these equations are equal to the
force balance conditions (4.17).

4.5 Principal vector linkages of closed chains of n elements

In the previous section a closed-chain principal vector linkage of four elements was
analyzed as a MEPC of three principal elements. This method can also be applied
to closed chains of higher number of elements. In general, a principal vector linkage
of a closed chain of n elements can be analyzed as an open-chain principal vector
linkage of n− 1 principal elements, which is illustrated in Fig. 4.25. Therefore el-
ement n is taken out of the chain and is modeled with the three equivalent masses
ma

n, mb
n, and mc

n according to Fig. 4.10. These equivalent masses are projected on
the open-chain principal vector linkage of n−1 principal elements as in Fig. 4.12a
which then becomes a MEPC. Then real equivalent mass ma

n is located in joint An−1,
real equivalent mass mb

n is located in joint A0, and virtual equivalent mass mc
n is lo-

cated once about each principal point according to Fig. 4.10b, or twice about each
principal point according to Fig. 4.10c. Herewith element n is included for the cal-
culation of the principal dimensions and the location of the principal points Pi for
each relative DoF i.

In the ELMS of each relative DoF the equivalent masses appear systematically
as shown in Fig. 4.26. Practically it can be regarded also as that a set of mb

n and mc
n

follows the loop from the left side, appearing similarly in each subsequent ELMS,
and that a set of ma

n and mc
n follows the loop from the right side, also appearing

similarly in each subsequent ELMS.
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Fig. 4.25 Closed chains of n elements can be analyzed as an open-chain principal vector linkage
of n−1 principal elements.
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When for the analysis of relative DoF 1 and relative DoF n− 1 the method of
rotations about the principal joints A1 and An−1 is used, then the virtual equivalent
mass in principal element 1 and n−1 has a location which does not depend on the
principal vectors as shown in Fig. 4.27. Therefore it can be combined with the other
masses in the element as in Fig. 4.15, which showed a convenient way to derive the
force balance conditions.

4.6 Discussion and conclusion

In this chapter principal vector linkages of closed kinematic chains were found and
investigated. With the open-chain method, closed-chain principal vector linkages
were obtained by closing open-chain principal vector linkages. This was shown for
an open-chain principal vector linkage of four principal elements of which the outer
principal elements were connected with a pivot. This is also possible for principal
vector linkages of higher number of principal elements. In addition, with the open-
chain method it is also possible to connect the outer principal elements to inner
principal elements or to principal vector links or to connect inner elements together,
especially for mechanisms with many DoFs. Instead of connecting elements with a
pivot, also other connections such as sliders are possible without affecting the force
balance.

The method of mass equivalent principal chains was proposed to find inherent
closed-chain principal vector linkages where the loop closure relations are consid-
ered. Therefore it was proposed to model an element with a general CoM with
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relative DoF i for analysis with rotations about the principal points Pi.



4.6 Discussion and conclusion 131

equivalent masses of which two are referred to as a real equivalent mass and one
is referred to as a virtual equivalent mass. Then one of the elements can be taken out
of the closed chain by projecting its equivalent masses on the open-chain principal
vector linkage of the remaining elements, which then is a mass equivalent principal
chain.

For analysis of each DoF individually of the mass equivalent principal chain,
the virtual equivalent mass has the property that it acts as a real mass in elements
for rotational motion, while is has no mass in elements for translational motion.
This property implies that the virtual equivalent mass is solely related to rotational
motion. This can also be observed from the equivalent mass model. For translational
motion an element with a general CoM can be modeled solely with one or more real
equivalent masses and no virtual equivalent mass is required. For rotational motion
however a virtual equivalent mass is required to model an element with a general
CoM with two joints.
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Fig. 4.27 Appearance of the equivalent masses of element n in the ELMS of the first and the last
relative DoF for analysis with rotations about principal joints A1 and An−2.
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When parameter fi in Fig. 4.10 has a negative value, the mass equivalent model
of Fig. 4.10c becomes as in Fig. 4.28. Since from (4.25) the value for mc

i then is also
negative, the CoM of the model still is in Si.

With a multi-body dynamic simulation the results were verified. From the closed-
chain principal vector linkages the force balance conditions of the general planar 4R
four-bar mechanism were derived, both as they are known and in terms of principal
dimensions.

Also inherent closed-chain principal vector linkages with principal elements in
parallel are possible. Figure 4.29 shows how the principal vector linkage in Fig. 3.30
is closed with element A4A5 between principal elements 11 and 12, and with element
A6A7 between principal elements 12 and 13. The principal elements are arranged as
a six-bar linkage with two closed loops. To find the force balance conditions, each
loop can be considered independently as a single closed chain where elements A4A5
and A6A7 can be modeled with equivalent masses. The projection of the equivalent
masses then will show that about the principal points P1 and P21 two different virtual
equivalent masses are modeled, one from each closed chain.

Also for inherent closed-chain principal vector linkages it its possible to have
inner and outer elements connected with various means. The following chapter will
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Fig. 4.29 The principal vector linkage in Fig. 3.30 can be closed with the two elements A4A5 and
A6A7 which can be modeled with equivalent masses to obtain the force balance conditions of this
closed-chain principal vector linkage of a six-bar linkage with two closed loops.
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show a specific example of this where multiple closed loops of inner and outer
elements are considered.





Chapter 5
Principal vector linkage architecture with
similar linkages

Abstract The motion of the CoM of a mechanism can be described with a point in
a mechanism similar to it. In this chapter the principal vector linkage of a closed
chain of four elements is combined with such a similar mechanism with which var-
ious theories from literature come together and are generalized. The conditions for
similarity of this principal vector linkage architecture are derived in terms of princi-
pal dimensions. Subsequently the principal dimensions are calculated by means of a
mass equivalent principal chain. For three closed loops, three elements are modeled
with each two real equivalent masses and one virtual equivalent mass. With this it is
shown that also elements with more than two joints are modeled with only two real
equivalent masses, which are located in the joints of the considered loop.

5.1 Architecture with CoM in invariant point in a similar linkage

It is shown by Kreutzinger [69] that the common CoM of the three moving links of
a 4R four-bar linkage with mass-symmetric links describes a curve with respect to
the base link that is similar to a coupler curve of the mechanism. The common CoM
therefore is a coupler point in a similar 4R four-bar linkage moving synchronously
(see Fig. A.7b). Wunderlich [109] extended this theory by showing that in general
the common CoM of the three moving links of a 4R four-bar linkage with general
mass distributions describes a curve similar to a coupler curve of the mechanism.
This is illustrated in Fig. 5.1 where S is the common CoM of m1, m2, and m3 and is
an invariant point in element A5A6 of the four-bar linkage A4A5A6A7, which is sim-
ilar and moves synchronously with the four-bar linkage A0A1A2A3. The trajectory
of S with respect to base link A0A3 is similar to the trajectory of point T in element
A1A2.

With respect to linkage A0A1A2A3, linkage A4A5A6A7 is similar and is scaled with
a factor η and is rotated with an angle γ . With angle ρ = ̸ TA1A2 = ̸ SA5A6, point
T is located in element A1A2 at a distance ε l2 from A1 and at an angle ρ relative to

135
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line A1A2, while point S is located in element A5A6 at a distance ηε l2 = εl6 from A5
at an angle ρ relative to line A5A6.
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Fig. 5.1 The CoM of general 4R four-bar linkage is an invariant point in the coupler link of a
similar 4R four-bar linkage moving synchronously which describes a curve similar to the curve of
point T in A1A2.
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joint in the common CoM in S with which the linkage has one DoF with respect to A0A3.
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Kreutzinger [69] derived his finding by using a graphical construction of princi-
pal vectors. When this graphical construction is transformed into a linkage and is
generalized for a 4R four-bar linkage with elements with general CoM, the com-
bined mechanism of a principal vector linkage and a similar linkage is obtained as
illustrated in Fig. 5.2. With S as a common joint between the principal vector link-
age and the similar linkage, the complete mechanism has one DoF with respect to
A0A3.

Shchepetil’nikov [87] proposed a method that he named the method of double
contour transformation to construct similar linkages for accurate graphical analy-
sis of the motion of the common CoM. This method is based on principal vectors
too and it was applied to linkages with mass-symmetric links. When generalized
for elements with general CoM, one solution of a double contour is illustrated in
Fig. 5.3. Here principal vector link P1B1 is extended with B1C1 to obtain parallelo-
gram SB1C1A6 where C1 is a joint with element A6A7 and distance A6C1 equals prin-
cipal dimension a3. Linkages P1C1A7 and A6A5A4 then are the said double contours
of the initial linkage A0A1A2A3 with which similar linkage A4A5A6A7 is obtained.
A second solution of a double contour linkage is shown in Fig. 5.4 where principal
vector link P3B2 is extended with B2C2 to obtain parallelogram SA5C2B2 where C2
is a joint with element A4A5 and distance A5C2 equals principal dimension a1.

To constrain the motion of the linkages to be similar, it is also possible to include
elements D8E8 or D9E9 as illustrated in Fig. 5.5. Points D8 and E8 can be located
arbitrarily within elements A0A1 and A4A5, respectively, as long as A0D8E8A4 is a
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Fig. 5.3 Generalized double contour linkage where principal vector link P1B1 is extended with
B1C1 where C1 is a joint with element A6A7.
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parallelogram and points D9 and E9 can be located arbitrarily within elements A2A3
and A6A7, respectively, as long as A3A7E9D9 is a parallelogram.
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Fig. 5.4 A second solution of a generalized double contour linkage where principal vector link
P3B2 is extended with B2C2 where C2 is a joint with element A4A5.
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5.2 Conditions for similarity

In this section the conditions for similarity of the two linkages are derived in terms
of principal dimensions. When the principal dimensions then are calculated from
the mass properties of each element, the design of the principal vector linkage ar-
chitecture is determined.

Figure 5.6 shows how the position of S can be described along a closed loop with
the complex vectors ui, vi, and wi as

A0S = v1u1 + v2u2 + v3u3 = w1u4 +w2u1 +w3u2 (5.1)

Vectors ui are the time dependent vectors that describe the motion of the relative
positions of joints A0, A1, A2, and A3 and vectors vi are the principal vectors v1 = a′1,
v2 = −a21, and v3 = −a3. Vectors wi describe the size and the pose of the similar
linkage with respect to linkage A0A1A2A3. From Fig. 5.6 the principal vectors can
be written as
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Fig. 5.6 The position of S is described with principal vectors vi, time dependent vectors ui, and
similar linkage vectors wi.
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with cosβ1 = b1/a1, sinβ1 = c1/a1, cosβ21 = b21/a21, sinβ21 = c2/a21, cosβ3 =
b3/a3, and sinβ3 = c3/a3. The vectors of the similar linkage wi can be written as

w1 = κR
1 +κ I

1i w2 = γR + γ I i w3 = w2(ρR +ρ I i) (5.3)

where κR
1 and κ I

1 are the real and imaginary part of angle κ1 = ̸ A4A0A3 , γR and γ I

are the real and imaginary part of angle γ , and ρR and ρ I are the real and imaginary
part of angle ρ . The loop closure equation can be written as u1 +u2 +u3 = u4 and
when substituted for u4, (5.1) can be rewritten as

(v1 −w1 −w2)u1 +(v2 −w1 −w3)u2 +(v3 −w1)u3 = 0 (5.4)

After substitution of (5.2) and (5.3) this equation results in

{(1− a1 cosβ1

l1
−κR

1 − γR)+(
a1 sinβ1

l1
−κ I

1 − γ I)i}u1 +

{(a21 cosβ21

l2
−κR

1 − γRρR + γ Iρ I)+(
a21 sinβ21

l2
−κ I

1 − γRρ I − γ IρR)i}u2 +

{(a3 cosβ3

l3
−κR

1 )+(
a3 sinβ3

l3
−κ I

1)i}u3 = 0 (5.5)

From this equation all conditions for similarity can be derived. Since in general the
time dependent vectors ui are not linearly related or zero, this equation only holds
when each of the three terms is zero. This means that each of the three real parts and
each of the three imaginary parts are zero. From the term of u3 then κR

1 , κ I
1, and κ1

are derived as

κR
1 =

a3 cosβ3

l3
=

b3

l3
κ I

1 =
a3 sinβ3

l3
=

c3

l3

κ1 = tan−1
(

κ I
1

κR
1

)
= tan−1

(
c3

b3

)
= β3 (5.6)

As a result, κ1 is found to be equal to β3. By substituting these results in the term of
u1, from this term being zero γR, γ I , and γ are found as

γR = 1− a1 cosβ1

l1
− a3 cosβ3

l3
= 1− b1

l1
− b3

l3

γ I =
a1 sinβ1

l1
− a3 sinβ3

l3
=

c1

l1
− c3

l3
(5.7)

γ = tan−1
(

γ I

γR

)
= tan−1

( a1
l1

sinβ1 − a3
l3

sinβ3

1− a1
l1

cosβ1 − a3
l3

cosβ3

)
= tan−1

( c1
l1
− c3

l3

1− b1
l1
− b3

l3

)

With γR and γ I the scale factor η of the similar linkage is calculated as



5.2 Conditions for similarity 141

η =
√
(γR)2 +(γ I)2 =

√
(1− a1

l1
cosβ1 −

a3

l3
cosβ3)2 +(

a1

l1
sinβ1 −

a3

l3
sinβ3)2

=

√
((l3 −b3)l1 −b1l3)2 +(c1l3 − c3l1)2

l1l3
(5.8)

The lengths of the links of the similar linkage then are related as

η =
l5
l1

=
l6
l2

=
l7
l3

=
∥A4A7∥

l4
(5.9)

By substituting κR
1 , κ I

1, γR, and γ I in the term of u2, from this term being zero ρR,
ρ I , and ρ are obtained as

ρR =
(1− a1 cosβ1

l1
− a3 cosβ3

l3
)( a21 cosβ21

l2
− a3 cosβ3

l3
)+( a1 sinβ1

l1
− a3 sinβ3

l3
)( a21 sinβ21

l2
− a3 sinβ3

l3
)

(1− a1 cosβ1
l1

− a3 cosβ3
l3

)2 +( a1 sinβ1
l1

− a3 sinβ3
l3

)2

ρ I =
(1− a1 cosβ1

l1
− a3 cosβ3

l3
)( a21 sinβ21

l2
− a3 sinβ3

l3
)− ( a1 sinβ1

l1
− a3 sinβ3

l3
)( a21 cosβ21

l2
− a3 cosβ3

l3
)

(1− a1 cosβ1
l1

− a3 cosβ3
l3

)2 +( a1 sinβ1
l1

− a3 sinβ3
l3

)2

ρ = tan−1
(

ρ I

ρR

)
(5.10)

or

ρR =
(1− b1

l1
− b3

l3
)( b21

l2
− b3

l3
)+( c1

l1
− c3

l3
)( c2

l2
− c3

l3
)

(1− b1
l1
− b3

l3
)2 +( c1

l1
− c3

l3
)2

ρ I =
(1− b1

l1
− b3

l3
)( c2

l2
− c3

l3
)− ( c1

l1
− c3

l3
)( b21

l2
− b3

l3
)

(1− b1
l1
− b3

l3
)2 +( c1

l1
− c3

l3
)2

ρ = tan−1

(
(1− b1

l1
− b3

l3
)( c2

l2
− c3

l3
)− ( c1

l1
− c3

l3
)( b21

l2
− b3

l3
)

(1− b1
l1
− b3

l3
)( b21

l2
− b3

l3
)+( c1

l1
− c3

l3
)( c2

l2
− c3

l3
)

)
(5.11)

With ρR and ρ I the distance ε in Fig. 5.1 is calculated as

ε =
√

(ρR)2 +(ρ I)2 (5.12)

and with κ1 and γ known, from polygon A0A3A7A4 angle κ2 = ̸ A7A3A0 can be
derived as

κR
2 = 1−κR

1 − γR =
a1 cosβ1

l1
=

b1

l1
κ I

2 = κ I
1 + γ I =

a1 sinβ1

l1
=

c1

l1

κ2 = tan−1
(

κ I
2

κR
2

)
= tan−1

(
c1

b1

)
= β1 (5.13)
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5.3 Force balance conditions from mass equivalent principal
chain

The linkage architecture in Fig. 5.7 is obtained when the elements in Fig. 5.2-5.5 are
combined and each element has a general CoM. For simplicity joint D8 is chosen
to be on the line A0A1 at a distance d8 from A0 and joint D9 is chosen to be on the
line A2A3 at a distance d9 from A3. Then joint E8 is located in A4A5 at a distance
d8 from A4 such that A0D8E8A4 is a parallelogram and joint E9 is located in A6A7
at a distance d9 from A7 such that A3A7E9D9 is a parallelogram. The linkage is five
times overconstrained but because of its specific dimensions it has a mobility of
one. From overconstrained balanced architectures a variety of inherently balanced
mechanisms can be synthesized as will be shown in chapter 7.

The mass parameters of the closed-chain principal vector linkage are equal to
Fig. 4.11. In addition, element A4A5 has a mass m5 with its CoM defined with pa-
rameters e5 and f5 relative to A5 and the line A5A4, element A5A6 has a mass m6
with its CoM defined with parameters e6 and f6 relative to A5 and the line A5A6, el-
ement A6A7 has a mass m7 with its CoM defined with parameters e7 and f7 relative
to A6 and the line A6A7, element D8E8 has a mass m8 with its CoM defined with
parameters e8 and f8 relative to D8 and the line D8E8, and element D9E9 has a mass
m9 with its CoM defined with parameters e9 and f9 relative to D9 and the line D9E9,
as illustrated.
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Fig. 5.7 Inherently balanced linkage architecture by combining the elements in Fig. 5.2-5.5 with
each a general CoM. For all motion the common CoM of the linkage is in joint S, which is an
invariant point in elements B1S, B2S, and A5A6.
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The force balance conditions can be derived following the same approach as in
section 4.4 by analysis of the mass equivalent principal chain. Therefore elements
that do not move similar to the principal elements, here elements A0A3, D8E8, and
D9E9, are modeled with equivalent masses while the similarly moving elements
A4A5, A5A6, and A6A7 become part of the mass equivalent principal chain. Without
the three mass equivalently modeled elements, the linkage in Fig. 5.7 has only closed
loops of parallelograms that are related to the principal chain.

Fig. 5.8a shows how element D8E8 is modeled with a real equivalent mass
ma

8 = m8(1− e8/l8) located in joint D8, a real equivalent mass mb
8 = m8e8/l8 lo-

cated in joint E8, and a virtual equivalent mass mc
8 = m8 f8/l8 located in both J81

and J82, according to the model in Fig. 4.10c. Similarly, Fig. 5.8b shows how el-
ement D9E9 is modeled with a real equivalent mass ma

9 = m9(1− e9/l9) located
in joint D9, a real equivalent mass mb

9 = m9e9/l9 located in joint E9, and a virtual
equivalent mass mc

9 = m9 f9/l9 located in both J91 and J92. The mass equivalent
model of element A0A3 is shown in Fig. 5.8c and is equal to the model in Fig. 4.12b
with a real equivalent mass ma

4 = m4(1−e4/l4) located in joint A3, a real equivalent
mass mb

4 = m4e4/l4 located in joint A0, and a virtual equivalent mass mc
4 = m4 f4/l4

located in both J41 and J42.
The equivalent masses are projected on the open-chain principal vector linkage

as illustrated in Fig. 5.9. The projection of ma
4, mb

4, and mc
4 are equal to Fig. 4.12a

with ma
4 in joint A3, mb

4 in joint A0, and mc
4 twice about each principal point P1, P2,

and P3. Equivalent masses ma
8, mb

8, ma
9, and mb

9 are projected in joints D8, E8, D9,
and E9, respectively. Following the loop on the left side from D8, virtual equivalent
mass mc

8 is projected about P1 and about P2 as illustrated. Following the loop on the
right side along E8A5SB2P2P1, virtual equivalent mass mc

8 is projected about A5, S,
B2, P2, and P1 as illustrated. It is also possible to follow the loop along B1 instead of
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9 and virtual equivalent masses mc

4, mc
8, and mc

9.



144 5 Principal vector linkage architecture with similar linkages

B2 which is effectively the same. As a result mc
8 is located twice about the principal

points P1 and P2.
Similarly the virtual equivalent mass of element D9E9 is projected. Following the

loop on the right side from D9, mc
9 is projected about P3 and about P2 as illustrated.

Following the loop on the left side along E9A6SB2P2P3, mc
9 is projected about A6, S,

B2, P2, and P3 as illustrated. About P2 and P3 then mc
9 is located twice.

For analysis with the method of rotations about the principal joints A1 and A2 as
a short way to derive the force balance conditions for DoF 1 and DoF 3, Fig. 5.10
shows the reduced projection of the virtual equivalent masses, derived similarly as in
Fig. 4.14. In element 1 then one mc

4 and one mc
8 are located about A1 and in element

3 one mc
4 and one mc

9 are located about A2.
Figure 5.11 shows for the relative motion of DoF 1 the virtual equivalent masses

of the rotating elements A0A1, A4A5, and SB2 which act as a real mass, while all other
virtual masses are zero since elements A5A6 and A6A7 solely translate and elements
A1A2, A2A3, and P2B2 are not moving. For the relative motion of DoF 3, Fig. 5.12
shows the virtual equivalent masses of the rotating elements A2A3, A6A7, and B2P2
which act as a real mass while all other virtual masses are zero since elements B2S,
A5A6, and A4A5 solely translate and elements A0A1 and A1A2 are not moving. For
the relative motion of DoF 2, Fig. 5.13 shows the virtual equivalent masses of the
rotating elements A1A2 and A4A6 which act as a real mass while all other virtual
masses are zero since elements A0A1, A2A3, A4A5, and A6A7 solely translate and
elements P2B2 and B2S do not move.
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Subsequently, the masses in element 1 for DoF 1 can be combined as shown
in Fig. 5.14a. Then the mass m′

1 = m1 +mb
4 +mc

4 +ma
8 +mc

8 has its CoM in S′1,
which is defined with e′1 and f ′1 relative to A1 and the line A1A0 as illustrated. These
parameters are calculated as

e′1 =
m1e1 +mb

4l1 +ma
8(l1 −d8)

m′
1

f ′1 =
m1 f1 −mc

4l1 +mc
8(l1 −d8)

m′
1

(5.14)

When the masses in element 3 for DoF 3 are combined as in Fig. 5.14b, then the
mass m′

3 = m3+ma
4+mc

4+ma
9+mc

9 has its CoM in S′3, which is defined with e′3 and
f ′3 relative to A2 and the line A2A3 as illustrated. These parameters are calculated as

e′3 =
m3e3 +ma

4l3 +ma
9(l3 −d9)

m′
3

f ′3 =
m3 f3 −mc

4l3 +mc
9(l3 −d9)

m′
3

(5.15)

It is also possible to combine the masses in element 5 for DoF 1 as shown in
Fig. 5.15a where the mass m′

5 =m5+mb
8+mc

8 has its CoM in S′5. When S′5 is defined
with e′5 and f ′5 relative to A5 and the line A5A4, as illustrated, these parameters are
calculated as

e′5 =
m5e5 +mb

8(l5 −d8 cosγ)−mc
8d8 sinγ

m′
5

(5.16)

f ′5 =
m5 f5 −mb

8d8 sinγ −mc
8(l5 −d8 cosγ)

m′
5

(5.17)

Similarly the masses in element 7 for DoF 3 can be combined as shown in Fig. 5.15b
where the mass m′

7 = m7 +mb
9 +mc

9 has its CoM in S′7. When S′7 is defined with e′7
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and f ′7 relative to A6 and the line A6A7, as illustrated, these parameters are calculated
as

e′7 =
m7e7 +mb

9(l7 −d9 cosγ)+mc
9d9 sinγ

m′
7

(5.18)

f ′7 =
m7 f7 +mb

9d9 sinγ −mc
9(l7 −d9 cosγ)

m′
7

(5.19)

With these combined masses, the relative motion of DoF 1 can be illustrated as
in Fig. 5.16, where from Fig. 5.15a p5 and q5 can be obtained as

p5 = e′5 cos(β1 + γ)+ f ′5 sin(β1 + γ) (5.20)
q5 = e′5 sin(β1 + γ)− f ′5 cos(β1 + γ)

or from

p5 cosβ1 +q5 sinβ1 = e′5 cosγ + f ′5 sinγ (5.21)
p5 sinβ1 −q5 cosβ1 = −e′5 sinγ + f ′5 cosγ

as

p5 = cosβ1(e′5 cosγ + f ′5 sinγ)− sinβ1(e′5 sinγ − f ′5 cosγ) (5.22)
q5 = sinβ1(e′5 cosγ + f ′5 sinγ)+ cosβ1(e′5 sinγ − f ′5 cosγ)

The linear momentum of the relative motion of DoF 1 can be written with respect
to the reference frame x1y1 as
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L1

θ̇1
=

m′
1(a1 + p1)+m′

5 p5 +(m11 +m33)a1 +m12(a1 − p12)+
m13(a1 − p13)+(m5 +m6 +m7 +mb

8 +mb
9)a1

−m′
1q1 +m′

5q5 +m12q12 +m13q13 +(mc
8 −mc

9)a1

=

[
mtota1

0

]
(5.23)

with the total mass of the linkage mtot = m1 +m2 +m3 +m4 +m5 +m6 +m7 +
m8 +m9 +m11 +m12 +m13 +m31 +m32 +m33. Here elements P1A1, P2B1, and B2S
solely rotate and elements A5SA6, P1B1C1, A6C1, and B1S solely translate. Since A5,
about which mc

8 is modeled, is moving, element A5C2 both translates and rotates.
This means that for the rotational motion the linear momentum of m′

5 is considered,
while for the translational motion the linear momentum of m5 +mb

8 is considered
since therefore mc

8 = 0. For DoF 1 then the force balance conditions are found as

m′
1 p1 +m′

5 p5 = (m1 −m′
1 +m2 +m3 +m4 +ma

8 +ma
9 +m31 +m32)a1 +

m12 p12 +m13 p13 (5.24)
m′

1q1 −m′
5q5 = (mc

8 −mc
9)a1 +m12q12 +m13q13

The relative motion of DoF 3 is illustrated in Fig. 5.17 where elements P3A2,
P2B2, and B1S solely rotate, elements A5SA6, P3B2C2, A5C2, and B2S solely translate,
and element A6C1 both translates and rotates. From Fig. 5.15b p7 and q7 can be
obtained as

p7 = e′7 cos(β3 − γ)+ f ′7 sin(β3 − γ) (5.25)
q7 = e′7 sin(β3 − γ)− f ′7 cos(β3 − γ)
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or from

p7 cosβ3 +q7 sinβ3 = e′7 cosγ − f ′7 sinγ (5.26)
p7 sinβ3 −q7 cosβ3 = e′7 sinγ + f ′7 cosγ

as

p7 = cosβ3(e′7 cosγ − f ′7 sinγ)+ sinβ3(e′7 sinγ + f ′7 cosγ) (5.27)
q7 = sinβ3(e′7 cosγ − f ′7 sinγ)− cosβ3(e′7 sinγ + f ′7 cosγ)

The linear momentum of this motion can be written with respect to the reference
frame x3y3 as

L3

θ̇3
=

m′
3(a3 + p3)+m′

7 p7 +(m13 +m31)a3 +m32(a3 − p32)+
m33(a3 − p33)+(m5 +m6 +m7 +mb

8 +mb
9)a3

m′
3q3 −m′

7q7 −m32q32 −m33q33 +(mc
8 −mc

9)a3

=

[
mtota3

0

]
(5.28)

from which the force balance conditions for DoF 3 are found as

m′
3 p3 +m′

7 p7 = (m1 +m2 +m3 −m′
3 +m4 +ma

8 +ma
9 +m11 +m12)a3 +

m32 p32 +m33 p33 (5.29)
m′

3q3 −m′
7q7 = −(mc

8 −mc
9)a3 +m32q32 +m33q33

A5

A6

C1

a
3

P1 P3

P2

B1

B2

S

x3
y3

S’7

q
3

.

A2

p3

q3

s’3

S’3

m’3

p33

p32

q32

q33

p7

q7

m -m
c c

9 8

m5

m
b

8

C2

m6

Fig. 5.17 Relative motion of DoF 3 to derive the linear momentum equations.



5.3 Force balance conditions from mass equivalent principal chain 151

The relative motion of DoF 2 is illustrated in Fig. 5.18 where elements A1A2,
A5A6, P1B1C1, and P3B2C2 solely rotate and elements P1A1, P3A2, A5C2, and A6C1
solely translate. Figure 5.19 shows the ELMS of this motion with

µ1 = m1 +m11 p11/a21 +mb
4 +ma

8, ν1 = mc
4 +m11q11/a21

µ3 = m3 +m31 p31/a23 +ma
4 +ma

9, ν2 = mc
4 +m31q31/a23

µ2 = m2, µ4 = m5 +mb
8, ν3 = mc

8 (5.30)
µ5 = m7 +mb

9, µ6 = m6, ν4 = mc
9

This ELMS is obtained as in Fig. 3.13 to which the linear momentum of elements
A5C2, A5SA6, and A6C1 is added by superimposing element A5SA6 with S and P2
coinciding. From the ELMS the linear momentum of DoF 2 can be written with
respect to the reference frame x2y2 as

L2

θ̇2
= µ1

[
c2

−b21

]
+ν1

[
b21
c2

]
+µ2

[
c2 − f2

−(b21 − e2)

]
−ν2

[
b21 − l2

c2

]
+µ3

[
c2

−(b21 − l2)

]
+

µ4η l2ε
[

sin(γ +ρ)
−cos(γ +ρ)

]
+µ5η l2

[
ε sin(γ +ρ)− sin(γ)

−ε cos(γ +ρ)+ cos(γ)

]
+

µ6

[
η l2ε sin(γ +ρ)− e6 sin(γ)− f6 cos(γ)
−η l2ε cos(γ +ρ)+ e6 cos(γ)− f6 sin(γ)

]
+ν3

[
−b21
−c2

]
+ (5.31)

ν3η l2ε
[

cos(γ +ρ)
sin(γ +ρ)

]
+ν4

[
−(l2 −b21)

c2

]
+ν4η l2

[
−ε cos(γ +ρ)+ cos(γ)
−ε sin(γ +ρ)+ sin(γ)

]
=

[
0
0

]
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The force balance conditions for DoF 2 then are found as

(µ1 +µ2 +µ3)c2 +(ν1 −ν2 −ν3 +ν4)b21 −µ2 f2 +(ν2 −ν4)l2+
(µ4 +µ5 +µ6)η l2ε sin(γ +ρ)+(ν3 −ν4)η l2ε cos(γ +ρ)−
(µ5η l2 +µ6e6)sinγ +(ν4η l2 −µ6 f6)cosγ = 0

(−µ1 −µ2 −µ3)b21 +(ν1 −ν2 −ν3 +ν4)c2 +µ2e2 +µ3l2+
(−µ4 −µ5 −µ6)η l2ε cos(γ +ρ)+(ν3 −ν4)η l2ε sin(γ +ρ)+
(µ5η l2 +µ6e6)cosγ +(ν4η l2 −µ6 f6)sinγ = 0

(5.32)
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Fig. 5.19 ELMS of relative motion of DoF 2 where the linear momentum of elements A5C2, A5SA6,
and A6C1 is added by superimposing element A5SA6 on A1A2 with S and P2 coinciding.
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Altogether, the force balance conditions of the inherently balanced linkage archi-
tecture in Fig. 5.7 are obtained from (5.24), (5.29), and (5.32) as:

(m2 +m3 +m4(1− e4
l4
− f4

l4
)−m8

f8
l8
+m9(1− e9

l9
)+m31 +m32)a1−

(m1 +m4(
e4
l4
+ f4

l4
)+m8(1− e8

l8
+ f8

l8
))p1 +m12 p12+

m13 p13 − (m5 +m8(
e8
l8
+ f8

l8
))p5 = 0

m12q12 +m13q13 − (m1 +m4(
e4
l4
+ f4

l4
)+m8(1− e8

l8
+ f8

l8
))q1+

(m5 +m8(
e8
l8
+ f8

l8
))q5 +(m8

f8
l8
−m9

f9
l9
)a1 = 0

(µ1 +µ2 +µ3)c2 +(ν1 −ν2 −ν3 +ν4)b21 −µ2 f2 +(ν2 −ν4)l2+
(µ4 +µ5 +µ6)η l2ε sin(γ +ρ)+(ν3 −ν4)η l2ε cos(γ +ρ)−

(µ5η l2 +µ6e6)sinγ +(ν4η l2 −µ6 f6)cosγ = 0
(−µ1 −µ2 −µ3)b21 +(ν1 −ν2 −ν3 +ν4)c2 +µ2e2 +µ3l2+

(−µ4 −µ5 −µ6)η l2ε cos(γ +ρ)+(ν3 −ν4)η l2ε sin(γ +ρ)+
(µ5η l2 +µ6e6)cosγ +(ν4η l2 −µ6 f6)sinγ = 0

(m1 +m2 +m4(
e4
l4
− f4

l4
)+m8(1− e8

l8
)−m9

f9
l9
+m11 +m12)a3−

(m3 +m4(1− e4
l4
+ f4

l4
)+m9(1− e9

l9
+ f9

l9
))p3 +m32 p32+

m33 p33 − (m7 +m9(
e9
l9
+ f9

l9
))p7 = 0

m32q32 +m33q33 − (m3 +m4(1− e4
l4
+ f4

l4
)+m9(1− e9

l9
+ f9

l9
))q3+

(m7 +m9(
e9
l9
+ f9

l9
))q7 − (m8

f8
l8
−m9

f9
l9
)a3 = 0

(5.33)

with (5.30) and where m′
1, m′

3, m′
5, m′

7, ma
4, mb

4, mc
4, ma

8, mb
8, mc

8, ma
9, mb

9, mc
9 were

substituted.
Since the force balance conditions depend on the similarity parameters γ , ρ , ε ,

and η , the principal dimensions are to be found in an iterative way. With s′21 =
e′21 + f ′21 = (a1 + p1)

2 + q2
1 and s′23 = e′23 + f ′23 = (a3 + p3)

2 + q2
3, from (5.24) and

(5.29) the equations for a1 and a3 can be written as

a1 =

√
m′2

1 s′21 −(m12q12+m13q13+m′
5q5+(mc

8−mc
9)a1)2−m12 p12−m13 p13+m′

5 p5

m1+m2+m3+m4+ma
8+ma

9+m31+m32

a3 =

√
m′2

3 s′23 −(m32q32+m33q33+m′
7q7+(mc

9−mc
8)a3)2−m32 p32−m33 p33+m′

7 p7

m1+m2+m3+m4+ma
8+ma

9+m11+m12

(5.34)

and the locations of P1 in A0A1 and P3 in A2A3 can be obtained as

b1 = a1 cosβ1 c1 = a1 sinβ1 b3 = a3 cosβ3 c1 = a3 sinβ3 (5.35)

with

β1 = sin−1(
f ′1
s′1
)−α1 = sin−1(

m1 f1 −mc
4l1 +mc

8(l1 −d8)

m′
1s′1

)−α1 (5.36)

β3 = sin−1(
f ′3
s′3
)−α3 = sin−1(

m3 f3 −mc
4l3 +mc

9(l3 −d9)

m′
3s′3

)−α3
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in which

α1 = sin−1
(

m12q12 +m13q13 +m′
5q5 +(mc

8 −mc
9)a1

m′
1s′1

)
(5.37)

α3 = sin−1
(

m32q32 +m33q33 +m′
7q7 +(mc

9 −mc
8)a3

m′
3s′3

)
They can also be found with (4.36), (4.37), and with (4.38).

For validation of the results, a simulation with a dynamic model of the mecha-
nism in Fig. 5.7 was made in which the only connection with the base is with a pivot
in S. The parameters of the mechanism are the same as in the first four columns of
Table 4.1, except for f4 which was chosen to be negative here, with in addition the
parameters in Table 5.1. The parameters in the last three columns of Table 5.1 were
calculated.

The simulation of the dynamic model is illustrated in Fig. 5.20 with two poses
of the mechanism. For the simulation time of 0.5 seconds a torque τ1 = 50cos(4πt)
Nm was applied to element SB1 and a torque τ2 =−τ1 was applied to element SB2.
The dynamics were solved with solver ODE45 (Dormand-Prince) with a maximal
step size of 0.0001 s and with a relative tolerance of 1e−12 m. The reaction forces in
the pivot with the base were recorded and are displayed in Fig. 5.21. These shaking
forces are expected to be zero for force balance and show an error which is about the
computation accuracy. Figure 5.22 shows the linear momentum of the mechanism
in both x and y−direction which are also expected to be zero for force balance and
have an error which is about the computation accuracy.

To demonstrate the feasibility of producing such a linkage architecture in real,
Fig. 5.23 shows a physical model of stainless steel in various poses. Here the prin-
cipal vector links were assumed massless and in the two pictures on top they were
added as made of paper.

Table 5.1 Parameters in addition to Table 4.1 of the inherently balanced architecture in Fig. 5.7
for simulation.

[kg] [m] [m] [m] [m] [.]
f4 =−0.13 a1 = 0.2477 γ =−0.1079

m5 = 0.2 e5 = 0.20 f5 = 0.11 l5 = 0.4853 b1 = 0.2396 η = 0.4853
m6 = 0.5 e6 = 0.43 f6 = 0.10 l6 = 1.4560 c1 = 0.0629 ρ = 0.0806
m7 = 0.8 e7 = 0.32 f7 = 0.18 l7 = 0.9706 a21 = 1.6946
m8 = 0.6 e8 = 0.55 f8 = 0.22 l8 = 0.9625 a23 = 1.3748
m9 = 0.7 e9 = 0.44 f9 = 0.19 l9 = 0.7927 b21 = 1.6636

d8 = 0.21 c2 = 0.3226
d9 = 0.32 a3 = 0.6016

b3 = 0.5558
c3 = 0.2302
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5.4 Discussion and conclusion

In this chapter it was shown that the motion of the common CoM of a 4R four-bar
linkage with its principal vector linkage and its similar linkage can be described
with a point in this similar linkage. Therefore various theories from literature were
generalized, extended, and combined. The conditions for similarity of the resulting
principal vector linkage architecture were derived and the force balance conditions
were calculated by means of a mass equivalent principal chain.

It was shown that multiple closed loops can be considered by equivalent mod-
eling of one element in each closed loop. In addition, with element A0A3A4A7 in
Fig. 5.7 it was shown that an element with more than two joints is modeled mass
equivalently also with only two real masses and a virtual equivalent mass of which
the real masses are projected in the two joints of the considered closed loop (here A0
and A3). This means that such an element can be considered in multiple ways, for
instance for the closed loop A4A5A6A7, element A0A3A4A7 would be modeled such
that the two real equivalent masses are projected in joints A4 and A7. The obtained
force balance conditions are independent of this choice. Since modeling along the
closed loop A4A5A6A7 trough S to P2 is longer than modeling along the closed loop
A0A1A2A3 where the equivalent masses are projected in the principal elements di-
rectly, the latter approach is more convenient.

Instead of constructing the principal vector linkage on the opposite side of the
similar linkage as in Fig. 5.7, it is also possible to have them on the same side as
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Fig. 5.20 Dynamic simulation in Spacar where S is a pivot with the base, a torque τ1 is applied
to element SB1, and a torque τ2 is applied to element SB2.
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shown in Fig. 5.24. The similar linkage then shares the central principal element
(here A0A3). It is also possible to construct them as in Fig. 5.25, where the similar
linkage shares one of the outer principal elements (here A2A3). To derive the force
balance conditions for these constructions, in Fig. 5.24 elements A1A2 and A5A6 can
be modeled mass equivalently while in Fig. 5.25 elements A0A1 and A4A5 can be
modeled mass equivalently.

There are numerous other possibilities and variations on these types of principal
vector linkage architectures. For instance the variation of the principal vector link-
age in Fig. 3.18 can be combined with the similar linkage, or the adapted principal
vector linkage in Fig. 3.20 can be combined with the similar linkage in which the
common CoM in joint S does not necessarily need to be an invariant point in A5A6,
leaving the initial motivation for designing a similar linkage. Figure 5.26 shows a
variation where two similar linkages are combined, which can be analyzed by using
the principal vector linkages in Fig. 5.24 and Fig. 5.25.

It is also possible to find similar linkages of linkages other than four-bar mech-
anisms. For instance a principal vector linkage architecture of similar 5R five-bar

Fig. 5.21 The resulting shak-
ing forces in pivot S show
that the mechanism is force
balanced about S.
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Fig. 5.22 The linear momentum in both x and y−direction, which were calculated from the simu-
lated motion, show force balance about S.
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Fig. 5.23 Physical model of a force-balanced mechanism of two similar four-bar linkages in four
poses. In the images on top an assumed massless principal vector linkage made of paper was added.
(see model in motion at: www.kineticart.nl)

linkages can be obtained by generalizing the theory in [87] following the theory in
this chapter, and similarly it can be extended to principal vector linkage architectures
of similar 6R six-bar linkages.

http://www.kineticart.nl/steadyman
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Chapter 6
Principal vector linkages for inherent shaking
moment balance

Abstract In this chapter the method of principal vectors is investigated for inherent
shaking moment balancing. Since in general the angular momentum of a princi-
pal vector linkage is not zero, shaking moment balance can only be obtained by
reduction of the degrees of freedom. Therefore it is shown that the angular momen-
tum of a principal vector linkage about its center of mass can be written compactly
such that the moment balance solutions can be derived. Also closed-chain principal
vector linkages are considered, where the angular momentum of a mass equivalent
principal chain was found only for the specific case that the inertia of the equiva-
lently modeled element equals the inertia of the two real equivalent masses about
their center of mass.

6.1 Moment balance conditions of open-chain principal vector
linkages

For the design of dynamically balanced linkages the shaking moments also need to
be considered. Therefore the angular momentum of a principal vector linkage about
its common CoM can be investigated which for shaking moment balance needs to
be constant for all motion.

The use of principal vectors for shaking moment balancing is not found in litera-
ture. Originally, Fisher developed the method to derive the kinetic energy equations
of a linkage in motion. With principal vectors it was shown that the kinetic en-
ergy of a linkage can be formulated compactly to solely depend on the total mass,
reduced inertia terms, the principal dimensions, and the time dependent angles of
each relative DoF [53]. Although kinetic energy equations are essentially different
from angular momentum equations, they share similarities. It will be shown in this
section that also the angular momentum of a linkage can be formulated compactly
with the same characteristics.

It will be shown how from the angular momentum equation the moment bal-
ance conditions of a principal vector linkage are derived. The angular momentum

161



162 6 Principal vector linkages for inherent shaking moment balance

equation of the 2-DoF pantograph in Fig. 3.2, the 3-DoF principal vector linkage in
Fig. 3.7, and the 4-DoF principal vector linkage in Fig. 3.23 are derived and moment
balance solutions are investigated.

6.1.1 Moment balance of a 2-DoF pantograph

Figure 6.1 shows the general planar pantograph or planar 2-DoF principal vector
linkage of Fig. 3.2 with common CoM in S. Each element has an arbitrary mass
distribution with link mass mi and link inertia Ii in and about link CoM Si. Generally,
the angular momentum of the linkage within the xy-plane about the common CoM
in S can be written as

HS = (I1 + I3)θ̇1 +(I2 + I4)θ̇2 +

m1(r1 × ṙ1)z +m2(r2 × ṙ2)z +m3(r3 × ṙ3)z +m4(r4 × ṙ4)z (6.1)

where z indicates the z-component of the cross-products. Vectors ri describe the
positions of the link CoMs Si relative to the common CoM in S and can be written
with the principal vectors as

r1 = a2

 cosθ2
sinθ2

0

− p1

 cosθ1
sinθ1

0

+q1

−sinθ1
cosθ1

0

 (6.2)

r2 = a1

 cosθ1
sinθ1

0

− p2

 cosθ2
sinθ2

0

−q2

−sinθ2
cosθ2

0

 (6.3)

r3 = p3

 cosθ1
sinθ1

0

−q3

−sinθ1
cosθ1

0

 (6.4)
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Fig. 6.1 General pantograph or 2-DoF principal vector linkage with common CoM in S. Each
element has an arbitrary mass distribution with link mass mi in and link inertia Ii about link CoM
Si.
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r4 = p4

 cosθ2
sinθ2

0

+q4

−sinθ2
cosθ2

0

 (6.5)

When vectors ri and their derivatives ṙi are substituted, the angular momentum be-
comes

HS = (I1 + I3 +m1(p2
1 +q2

1)+m2a2
1 +m3(p2

3 +q2
3))θ̇1 +

(I2 + I4 +m1a2
2 +m2(p2

2 +q2
2)+m4(p2

4 +q2
4))θ̇2 − (6.6)

(m1a2 p1 +m2a1 p2)cos(θ1 −θ2)(θ̇1 + θ̇2)−
(m1a2q1 +m2a1q2)sin(θ1 −θ2)(θ̇1 + θ̇2)

Subsequently, the force balance conditions (3.2) can be substituted for m1 p1, m2 p2,
m1q1, and m2q2, which leads to the angular momentum equation

HS = (I1 + I3 +m1(p2
1 +q2

1)+m2a2
1 +m3(p2

3 +q2
3))θ̇1 +

(I2 + I4 +m1a2
2 +m2(p2

2 +q2
2)+m4(p2

4 +q2
4))θ̇2 − (6.7)

(mtota1a2 −m3a2(a1 − p3)−m4a1(a1 − p4))cos(θ1 −θ2)(θ̇1 + θ̇2)−
(m3a2q3 +m4a1q4)sin(θ1 −θ2)(θ̇1 + θ̇2)

with mtot = m1 +m2 +m3 +m4. With the linkage inertia written with its radius of
gyration κi as Ii = mtotκ2

i and with the reduced inertia terms written as mtotξ 2
i , the

angular momentum can be written in its final compact form as

HS = mtot{χ2
1 θ̇1 +χ2

2 θ̇2 −a1a2 cos(θ1 −θ2)(θ̇1 + θ̇2)}+
(m3a2(a1 − p3)+m4a1(a2 − p4))cos(θ1 −θ2)(θ̇1 + θ̇2)− (6.8)
(m3a2q3 +m4a1q4)sin(θ1 −θ2)(θ̇1 + θ̇2)

in which χ2
i = κ2

i +ξ 2
i are the radii of the reduced inertias with the reduced inertias

written as

mtot χ2
1 = I1 + I3 +m1(p2

1 +q2
1)+m2a2

1 +m3(p2
3 +q2

3) (6.9)
mtot χ2

2 = I2 + I4 +m1a2
2 +m2(p2

2 +q2
2)+m4(p2

4 +q2
4)

These reduced inertia terms can be found also from the ELMSs of the individual
motions of DoF 1 and DoF 2 (Fig. 3.5) which are shown in Fig. 6.2. They are cal-
culated as the inertia of the masses in each ELMS about the principal point together
with the link inertias. The first line of the angular momentum equation depends
solely on the total mass, the reduced inertias, the principal dimensions, and the time
dependent angles of each relative DoF. This is the angular momentum of mainly the
principal elements. The last two lines of the angular momentum equation depend
on the masses m3 and m4 of the principal vector links 3 and 4. When the method of
principal vectors is solely used to analyze the motion of the principal elements (i.e.
m3 = 0, m4 = 0, I3 = 0, and I4 = 0), then the angular momentum reduces to
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HS = mtot(χ2
1 θ̇1 +χ2

2 θ̇2 −a1a2 cos(θ1 −θ2)(θ̇1 + θ̇2)) (6.10)

with the reduced inertias written as

mtot χ2
1 = I1 +m1 p2

1 +m2a2
1 (6.11)

mtot χ2
2 = I2 +m1a2

2 +m2 p2
2

For the principal vector linkage in Fig. 6.1, moment balance is obtained when the
angular momentum (6.8) is constant, which is for the moment balance condition:

mtot{χ2
1 θ̇1 +χ2

2 θ̇2 −a1a2 cos(θ1 −θ2)(θ̇1 + θ̇2)}+
(m3a2(a1 − p3)+m4a1(a2 − p4))cos(θ1 −θ2)(θ̇1 + θ̇2)− (6.12)
(m3a2q3 +m4a1q4)sin(θ1 −θ2)(θ̇1 + θ̇2) = Λ

with constant Λ ∈ ℜ.

Moment balance solutions

In general, the moment balance condition (6.12) is not constant or zero for all mo-
tion. It can only be constant for specific relations among the individual relative mo-
tions, which means for reduced cases. For instance for Λ = 0, a possible solution is
the set of two moment balance conditions

θ̇1 + θ̇2 = 0 (6.13)
χ2

1 = χ2
2

of which the latter results in

I1 + I3 +m1(p2
1 +q2

1)+m2a2
1 +m3(p2

3 +q2
3) =

I2 + I4 +m1a2
2 +m2(p2

2 +q2
2)+m4(p2

4 +q2
4) (6.14)
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Fig. 6.2 ELMSs of individual motions of a) DoF 1 and b) DoF 2, including the link inertias from
which the reduced inertia terms are obtained as the inertia of these reduced mass models.
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Then the two relative motions are equal and in opposite direction.
In general, a linear relation between the motion of the two relative DoFs can

be written with θ2 = t1 − t2θ1 with arbitrary constants t1 and t2. Together with its
derivative θ̇2 =−t2θ̇1, then the moment balance condition (6.12) reduces to

mtot(χ2
1 − t2χ2

2 −a1a2(1− t2)cos((1+ t2)θ1 − t1))+

(m3a2(a1 − p3)+m4a1(a2 − p4))(1− t2)cos((1+ t2)θ1 − t1)− (6.15)
(m3a2q3 +m4a1q4)(1− t2)sin((1+ t2)θ1 − t1) = 0

The general set of moment balance conditions for linear relations between the mo-
tion of the two relative DoFs then is found as

θ2 = t1 − t2θ1

θ̇2 =−t2θ̇1 (6.16)
mtot χ2

1 −mtott2χ2
2 +(−a1a2mtot +m3a2(a1 − p3)+

m4a1(a2 − p4))(1− t2)cos((1+ t2)θ1 − t1)−
(m3a2q3 +m4a1q4)(1− t2)sin((1+ t2)θ1 − t1) = 0

Two subsets of moment balance conditions can be derived from these equations. The
subset of moment balance conditions for t2 = 1 was shown in (6.13) and a second
subset of moment balance conditions is found as

θ2 = t1 − t2θ1

θ̇2 =−t2θ̇1

χ2
1 = t2χ2

2 (6.17)
−a1a2mtot +m3a2(a1 − p3)+m4a1(a2 − p4) = 0
m3a2q3 +m4a1q4 = 0

Here the two relative motions are in opposite direction but with different angular ve-
locities. Moment balance solutions for nonlinear relations between the two relative
DoFs can be found in a similar way.

6.1.2 Moment balance of three principal elements in series

Figure 6.3 shows the planar open-chain 3-DoF principal vector linkage of Fig. 3.7
with an arbitrary CoM in each element. Also each element has an inertia Ii about its
CoM Si. In general, the angular momentum about the common CoM in S within the
xy-plane can be written as

HS = (I1 + I12 + I13)θ̇1 +(I2 + I11 + I31)θ̇2 +(I3 + I32 + I33)θ̇3 +

m1(r1 × ṙ1)z +m2(r2 × ṙ2)z +m3(r3 × ṙ3)z + (6.18)
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m11(r11 × ṙ11)z +m12(r12 × ṙ12)z +m13(r13 × ṙ13)z +

m31(r31 × ṙ31)z +m32(r32 × ṙ32)z +m33(r33 × ṙ33)z

where vectors ri describe the positions of the link CoMs Si relative to the common
CoM in S and can be written with the principal vectors as

r1 = a3Π3 −a21Π21 − p1Π1 +q1Π ′
1

r2 = a1Π1 +a3Π3 + pa
2Π21 +qa

2Π ′
21 − pb

2Π23 +qb
2Π ′

23

r3 = a1Π1 +a23Π23 − p3Π3 −q3Π ′
3

r11 = a3Π3 − p11Π21 −q11Π ′
21

r12 = a3Π3 + p12Π1 −q12Π ′
1 (6.19)

r13 = p13Π1 −q13Π ′
1

r31 = a1Π1 + p31Π23 −q31Π ′
23

r32 = a1Π1 + p32Π3 +q32Π ′
3

r33 = p33Π3 +q33Π ′
3

where

Πi =

 cosθi
sinθi

0

 Π ′
i =

−sinθi
cosθi

0
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Fig. 6.3 General open-chain 3-DoF principal vector linkage with common CoM in S. Each of the
nine elements has an arbitrary mass distribution with link mass mi and link inertia Ii in and about
link CoM Si.
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Here angles θ21 = θ2+β21 and θ23 = θ2−β23 divide θ2 with respect to the principal
dimensions a21 and a23, respectively, as illustrated in Fig. 6.3. When these vectors
and their derivatives are substituted, the angular momentum can be written as

HS = (I1 + I12 + I13 +m1(p2
1 +q2

1)+(m2 +m3 +m31 +m32)a2
1 +

m12(p2
12 +q2

12)+m13(p2
13 +q2

13))θ̇1 +

(I2 + I11 + I31)θ̇2 +

(m1a2
21 +m2((pa

2)
2 +(qa

2)
2)+m11(p2

11 +q2
11))θ̇21 +

(m2((pb
2)

2 +(qb
2)

2)+m3a2
23 +m31(p2

31 +q2
31))θ̇23 +

(I3 + I32 + I33 +m3(p2
3 +q2

3)+(m1 +m2 +m11 +m12)a2
3 + (6.20)

m32(p2
32 +q2

32)+m33(p2
33 +q2

33))θ̇3 +

(m1a21 p1 +m2a1 pa
2)cos(θ1 −θ21)(θ̇1 + θ̇21)+

(−m2a1 pb
2 +m3a1a23 +m31a1 p31)cos(θ1 −θ23)(θ̇1 + θ̇23)+

(−m1a3 p1 +m2a1a3 −m3a1 p3 +m12a3 p12 +m32a1 p32)cos(θ1 −θ3)(θ̇1 + θ̇3)+

(−m2 pa
2 pb

2 +m2qa
2qb

2)cos(θ21 −θ23)(θ̇21 + θ̇23)+

(−m1a21a3 +m2a3 pa
2 −m11a3 p11)cos(θ21 −θ3)(θ̇21 + θ̇3)+

(−m2a3 pb
2 −m3a23 p3)cos(θ23 −θ3)(θ̇23 + θ̇3)+

(m1a21q1 +m2a1qa
2)sin(θ1 −θ21)(θ̇1 + θ̇21)+

(m2a1qb
2 −m31a1q31)sin(θ1 −θ23)(θ̇1 + θ̇23)+

(−m1a3q1 −m3a1q3 +m12a3q12 +m32a1q32)sin(θ1 −θ3)(θ̇1 + θ̇3)+

(m2 pa
2qb

2 +m2 pb
2qa

2)sin(θ21 −θ23)(θ̇21 + θ̇23)+

(−m2a3qa
2 +m11a3q11)sin(θ21 −θ3)(θ̇21 + θ̇3)+

(−m2a3qb
2 −m3a23q3)sin(θ23 −θ3)(θ̇23 + θ̇3)

Then when the relations θ21 = θ2 + β21, θ23 = θ2 − β23, and θ̇21 = θ̇23 = θ̇2 are
substituted, the angular momentum equation becomes

HS = mtot{χ2
1 θ̇1 +χ2

2 θ̇2 +χ2
3 θ̇3}+

(m1a21 p1 +m2a1 pa
2)cos(θ1 −θ2 −β21)(θ̇1 + θ̇2)+

(−m2a1 pb
2 +m3a1a23 +m31a1 p31)cos(θ1 −θ2 +β23)(θ̇1 + θ̇2)+

(−m1a3 p1 +m2a1a3 −m3a1 p3 +m12a3 p12 +m32a1 p32)cos(θ1 −θ3)(θ̇1 + θ̇3)+

(−m1a21a3 +m2a3 pa
2 −m11a3 p11)cos(θ2 −θ3 +β21)(θ̇2 + θ̇3)+

(−m2a3 pb
2 −m3a23 p3)cos(θ2 −θ3 −β23)(θ̇2 + θ̇3)+

(m1a21q1 +m2a1qa
2)sin(θ1 −θ2 −β21)(θ̇1 + θ̇2)+ (6.21)

(m2a1qb
2 −m31a1q31)sin(θ1 −θ2 +β23)(θ̇1 + θ̇2)+

(−m1a3q1 −m3a1q3 +m12a3q12 +m32a1q32)sin(θ1 −θ3)(θ̇1 + θ̇3)+

(−m2a3qa
2 +m11a3q11)sin(θ2 −θ3 +β21)(θ̇2 + θ̇3)+

(−m2a3qb
2 −m3a23q3)sin(θ2 −θ3 −β23)(θ̇2 + θ̇3)
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with mtot =m1+m2+m3+m11+m12+m13+m31+m32+m33 and with the reduced
inertias mtot χ2

1 , mtot χ2
2 , and mtot χ2

3 written as

mtot χ2
1 = I1 + I12 + I13 +m1(p2

1 +q2
1)+(m2 +m3 +m31 +m32)a2

1 +

m12(p2
12 +q2

12)+m13(p2
13 +q2

13) (6.22)
mtot χ2

2 = I2 + I11 + I31 +m1a2
21 +m2d2

2 +m3a2
23 +

m11(p2
11 +q2

11)+m31(p2
31 +q2

31) (6.23)
mtot χ2

3 = I3 + I32 + I33 +m3(p2
3 +q2

3)+(m1 +m2 +m11 +m12)a2
3 +

m32(p2
32 +q2

32)+m33(p2
33 +q2

33) (6.24)

where d2
2 = (pa

2)
2 + (qa

2)
2 + (pb

2)
2 + (qb

2)
2 + 2(−pa

2 pb
2 + qa

2qb
2)cos(β21 + β23) +

2(pa
2qb

2 + pb
2qa

2)sin(β21 + β23), with d2 the distance P2S2 as in Fig. 6.3. These re-
duced inertia terms can be found also from the ELMSs of the individual motions
of the three relative DoFs (Figs. 3.11 and 3.13), which are shown in Fig. 6.4. They
are calculated as the inertia of the masses in each ELMS about the principal point
together with the link inertias.

Subsequently the force balance conditions (3.22) can be substituted for m1 p1,
m1q1, m2 pa

2, m2qa
2, m2 pb

2, m2qb
2, m3 p3, and m3q3 with which the angular momentum

results in its final form as
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Fig. 6.4 ELMSs of the relative DoFs from which the three reduced inertias are obtained as the
inertia of each model about the principal point.
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HS = mtot{χ2
1 θ̇1 +χ2

2 θ̇2 +χ2
3 θ̇3 −a1a3 cos(θ1 −θ3)(θ̇1 + θ̇3)+

a1a21 cos(θ1 −θ2 −β21)(θ̇1 + θ̇2)−a3a23 cos(θ2 −θ3 −β23)(θ̇2 + θ̇3)}−
(m33a1a21 +m11(a21 − p11)a1 +m12(a1 − p12)a21 +

m13(a1 − p13)a21)cos(θ1 −θ2 −β21))(θ̇1 + θ̇2)+

(m33(a3 − p33)a1 +m13(a1 − p13)a3)cos(θ1 −θ3)(θ̇1 + θ̇3)+

(m13a3a23 +m31(a23 − p31)a3 +m32(a3 − p32)a23 + (6.25)
m33(a3 − p33)a23)cos(θ2 −θ3 −β23)(θ̇2 + θ̇3)+

(m11a1q11 +m12a21q12 +m13a21q13)sin(θ1 −θ2 −β21)(θ̇1 + θ̇2)−
(m13a3q13 +m33a1q33)sin(θ1 −θ3)(θ̇1 + θ̇3)−
(m31a3q31 +m32a23q32 +m33a23q33)sin(θ2 −θ3 −β23)(θ̇2 + θ̇3)

The first part of the angular momentum is mainly related to the three principal ele-
ments with

HS,P = mtot(χ2
1 θ̇1 +χ2

2 θ̇2 +χ2
3 θ̇3 −a1a3 cos(θ1 −θ3)(θ̇1 + θ̇3)+ (6.26)

a1a21 cos(θ1 −θ2 −β21)(θ̇1 + θ̇2)−a3a23 cos(θ2 −θ3 −β23)(θ̇2 + θ̇3))

From the angular momentum the moment balance condition of the 3-DoF principal
vector linkage in Fig. 6.3 is found as:

mtot(χ2
1 θ̇1 +χ2

2 θ̇2 +χ2
3 θ̇3)+((mtot −m33)a1a21 −m11(a21 − p11)a1 −

m12(a1 − p12)a21 −m13(a1 − p13)a21)cos(θ1 −θ2 −β21))(θ̇1 + θ̇2)+

(−mtota1a3 +m33(a3 − p33)a1 +m13(a1 − p13)a3)cos(θ1 −θ3)(θ̇1 + θ̇3)+

(−(mtot −m13)a3a23 +m31(a23 − p31)a3 +m32(a3 − p32)a23 +

m33(a3 − p33)a23)cos(θ2 −θ3 −β23)(θ̇2 + θ̇3)+ (6.27)
(m11a1q11 +m12a21q12 +m13a21q13)sin(θ1 −θ2 −β21)(θ̇1 + θ̇2)−
(m13a3q13 +m33a1q33)sin(θ1 −θ3)(θ̇1 + θ̇3)−
(m31a3q31 +m32a23q32 +m33a23q33)sin(θ2 −θ3 −β23)(θ̇2 + θ̇3) = Λ

with constant Λ ∈ ℜ.

Moment balance solutions

To have the moment balance condition (6.27) hold, also here the relative motions
need to be related linearly or nonlinearly in specific way, for which there are various
possibilities. As an example one case is shown where Λ = 0, θ3 = t1 − θ1, and
θ2 = t2, which means that θ̇3 = −θ̇1 and θ̇2 = 0 and principal element 2 does not
rotate while principal elements 1 and 3 rotate with the same angular velocity in
opposite direction. The moment balance condition (6.27) then reduces to
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mtot(χ2
1 −χ2

3 )+((mtot −m33)a1a21 −m11(a21 − p11)a1 −
m12(a1 − p12)a21 −m13(a1 − p13)a21)cos(θ1 − t2 −β21)+

(−(mtot −m13)a3a23 +m31(a23 − p31)a3 +m32(a3 − p32)a23 +

m33(a3 − p33)a23)cos(θ1 − t1 + t2 −β23)+

(m11a1q11 +m12a21q12 +m13a21q13)sin(θ1 − t2 −β21)+

(m31a3q31 +m32a23q32 +m33a23q33)sin(θ1 − t1 + t2 −β23) = 0

and a set of moment balance conditions is found as

θ2 = t2
θ3 = t1 −θ1

χ2
1 = χ2

3 (6.28)
(mtot −m33)a1a21 −m11(a21 − p11)a1 −m12(a1 − p12)a21 −m13(a1 − p13)a21 = 0
(m13 −mtot)a3a23 +m31(a23 − p31)a3 +m32(a3 − p32)a23 +m33(a3 − p33)a23 = 0
m11a1q11 +m12a21q12 +m13a21q13 = 0
m31a3q31 +m32a23q32 +m33a23q33 = 0

For the symmetric opposite motion of principal elements 1 and 3 with respect to
element 2 where t1 = π + 2t2, then when the principal vector linkage is designed
with the symmetry β21 = β23, the moment balance condition reduces to

mtot(χ2
1 −χ2

3 )+((mtot −m33)a1a21 −m11(a21 − p11)a1 −
m12(a1 − p12)a21 −m13(a1 − p13)a21 +(mtot −m13)a3a23 −
m31(a23 − p31)a3 −m32(a3 − p32)a23 −m33(a3 − p33)a23)cos(θ1 − t2 −β21)+

(m11a1q11 +m12a21q12 +m13a21q13 −
m31a3q31 −m32a23q32 −m33a23q33)sin(θ1 − t2 −β21) = 0

and a set of moment balance conditions is found as

θ2 = t2
θ3 = π +2t2 −θ1 (6.29)
χ2

1 = χ2
3

(mtot −m33)a1a21 −m11(a21 − p11)a1 −m12(a1 − p12)a21 −m13(a1 − p13)a21 +

(mtot −m13)a3a23 −m31(a23 − p31)a3 −m32(a3 − p32)a23 −m33(a3 − p33)a23 = 0
m11a1q11 +m12a21q12 +m13a21q13 −m31a3q31 −m32a23q32 −m33a23q33 = 0

For both sets of moment balance solutions the principal vector linkage of three DoFs
is reduced to a dynamically balanced mechanism of one DoF.
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6.1.3 Moment balance of four principal elements in series

Figure 6.5 shows the planar open-chain 3-DoF principal vector linkage of Fig. 3.23
with a general CoM in each element. Also each element has an inertia Ii about its
CoM Si. In general, the angular momentum about the common CoM in S within the
xy-plane can be written as

HS = (I1 + I12 + I13 + I14)θ̇1 +(I2 + I11 + I21 + I22)θ̇2 +

(I3 + I31 + I32 + I41)θ̇3 +(I4 + I42 + I43 + I44)θ̇4 + (6.30)
m1(r1 × ṙ1)z +m2(r2 × ṙ2)z +m3(r3 × ṙ3)z +m4(r4 × ṙ4)z +

m11(r11 × ṙ11)z +m12(r12 × ṙ12)z +m13(r13 × ṙ13)z +m14(r14 × ṙ14)z +

m21(r21 × ṙ21)z +m22(r22 × ṙ22)z +m31(r31 × ṙ31)z +m32(r32 × ṙ32)z +

m41(r41 × ṙ41)z +m42(r42 × ṙ42)z +m43(r43 × ṙ43)z +m44(r44 × ṙ44)z

where vectors ri describe the positions of the link CoMs Si relative to the common
CoM in S and can be written with the principal vectors as

r1 = a4Π4 −a32Π32 −a21Π21 − p1Π1 +q1Π ′
1

r2 = a1Π1 +a4Π4 −a32Π32 + pa
2Π21 +qa

2Π ′
21 − pb

2Π23 +qb
2Π ′

23

r3 = a1Π1 +a4Π4 +a23Π23 + pa
3Π32 +qa

3Π ′
32 − pb

3Π34 +qb
3Π ′

34

r4 = a1Π1 +a23Π23 +a34Π34 − p4Π4 −q4Π ′
4
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Fig. 6.5 General open-chain 4-DoF principal vector linkage with common CoM in S. Each of the
16 elements has an arbitrary mass distribution with link mass mi and link inertia Ii in and about
link CoM Si.



172 6 Principal vector linkages for inherent shaking moment balance

r12 = a4Π4 −a32Π32 + p12Π1 −q12Π ′
1 (6.31)

r13 = a4Π4 + p13Π1 −q13Π ′
1

r14 = p14Π1 −q14Π ′
1

r21 = a1Π1 +a4Π4 + p21Π23 −q21Π ′
23

r22 = a1Π1 + p22Π23 −q22Π ′
23

r31 = a1Π1 +a4Π4 − p31Π32 −q31Π ′
32

r32 = a1Π1 − p32Π32 −q32Π ′
32

r41 = a1Π1 +a23Π23 + p41Π34 −q41Π ′
34

r42 = a1Π1 +a23Π23 + p42Π4 +q42Π ′
4

r43 = a1Π1 + p43Π4 +q43Π ′
4

r44 = p44Π4 +q44Π ′
4

with

Πi =

 cosθi
sinθi

0

 Π ′
i =

−sinθi
cosθi

0


Here angles θ21 = θ2+β21 and θ23 = θ2−β23 divide θ2 with respect to the principal
dimensions a21 and a23, respectively, and angles θ32 = θ3 +β32 and θ34 = θ3 −β34
divide θ3 with respect to the principal dimensions a32 and a34, respectively. When
these vectors and their derivatives are substituted, the angular momentum can be
written as

HS =

(I1 + I12 + I13 + I14 +(m2 +m3 +m4 +m21 +m22 +m31 +m41 +m42 +m43)a2
1 +

m1(p2
1 +q2

1)+m12(p2
12 +q2

12)+m13(p2
13 +q2

13)+m14(p2
14 +q2

14))θ̇1 +

(I2 + I11 + I21 + I22)θ̇2 +(I3 + I31 + I32 + I41)θ̇3 +

(m1a2
21 +m2((pa

2)
2 +(qa

2)
2)+m11(p2

11 +q2
11))θ̇21 +

((m3 +m4 +m41 +m42)a2
23 +m2((pb

2)
2 +(qb

2)
2)+

m21(p2
21 +q2

21)+m22(p2
22 +q2

22))θ̇23 +

((m1 +m2 +m11 +m12)a2
32 +m3((pa

3)
2 +(qa

3)
2)+

m31(p2
31 +q2

31)+m32(p2
32 +q2

32))θ̇32 +

(m3((pb
3)

2 +(qb
3)

2)+m4a2
34 +m41(p2

41 +q2
41))θ̇34 +

(I4 + I42 + I43 + I44 +(m1 +m2 +m3 +m11 +m12 +m13 +m21 +m31 +m32)a2
4 +

m4(p2
4 +q2

4)+m42(p2
42 +q2

42)+m43(p2
43 +q2

43)+m44(p2
44 +q2

44))θ̇4 +

(m1a21 p1 +m2a1 pa
2)cos(θ1 −θ21)(θ̇1 + θ̇21)+

((m3 +m4 +m41 +m42)a1a23 −m2a1 pb
2 +m21a1 p21 +

m22a1 p22)cos(θ1 −θ23)(θ̇1 + θ̇23)+

(m1a32 p1 −m2a1a32 +m3a1 pa
3 −m12a32 p12 −
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m31a1 p31)cos(θ1 −θ32)(θ̇1 + θ̇32)+

(−m3a1 pb
3 +m4a1a34 +m41a1 p41)cos(θ1 −θ34)(θ̇1 + θ̇34)+

(−m1a4 p1 +(m2 +m3 +m21 +m31)a1a4 −m4a1 p4 +m12a4 p12 +

m13a4 p13 +m42a1 p42 +m43a1 p43)cos(θ1 −θ4)(θ̇1 + θ̇4)+

(−m2 pa
2 pb

2 +m2qa
2qb

2)cos(θ21 −θ23)(θ̇21 + θ̇23)+

(m1a21a32 −m2a32 pa
2 +m11a32 p11)cos(θ21 −θ32)(θ̇21 + θ̇32)+

(−m1a21a4 +m2a4 pa
2 −m11a4 p11)cos(θ21 −θ4)(θ̇21 + θ̇4)+

(m2a32 pb
2 +m3a23 pa

3)cos(θ23 −θ32)(θ̇23 + θ̇32)+

(−m3a23 pb
3 +m4a23a34 +m41a23 p41)cos(θ23 −θ34)(θ̇23 + θ̇34)+

(−m2a4 pb
2 +m3a23a4 −m4a23 p4 +m21a4 p21 +

m42a23 p42)cos(θ23 −θ4)(θ̇23 + θ̇4)+

(−m3 pa
3 pb

3 +m3qa
3qb

3)cos(θ32 −θ34)(θ̇32 + θ̇34)+

(−m1a32a4 −m2a32a4 +m3a4 pa
3 −m11a32a4 −m12a32a4 −

m31a4 p31 −m32a4 p32)cos(θ32 −θ4)(θ̇32 + θ̇4)+

(−m3a4 pb
3 −m4a34 p4)cos(θ34 −θ4)(θ̇34 + θ̇4)+ (6.32)

(m1a21q1 +m2a1qa
2)sin(θ1 −θ21)(θ̇1 + θ̇21)+

(m2a1qb
2 −m21a1q21 −m22a1q22)sin(θ1 −θ23)(θ̇1 + θ̇23)+

(m1a32q1 +m3a1qa
3 −m12a32q12 −m31a1q31)sin(θ1 −θ32)(θ̇1 + θ̇32)+

(m3a1qb
3 −m41a1q41)sin(θ1 −θ34)(θ̇1 + θ̇34)+

(−m1a4q1 −m4a1q4 +m12a4q12 +m13a4q13 +m42a1q42 +

m43a1q43)sin(θ1 −θ4)(θ̇1 + θ̇4)+

(m2 pa
2qb

2 +m2 pb
2qa

2)sin(θ21 −θ23)(θ̇21 + θ̇23)+

(m2a32qa
2 −m11a32q11)sin(θ21 −θ32)(θ̇21 + θ̇32)+

(−m2a4qa
2 +m11a4q11)sin(θ21 −θ4)(θ̇21 + θ̇4)+

(m2a32qb
2 +m3a23qa

3)sin(θ23 −θ32)(θ̇23 + θ̇32)+

(m3a23qb
3 −m41a23q41)sin(θ23 −θ34)(θ̇23 + θ̇34)+

(−m2a4qb
2 +m21a4q21 −a23m4q4 +a23m42q42)sin(θ23 −θ4)(θ̇23 + θ̇4)+

(m3 pa
3qb

3 +m3 pb
3qa

3)sin(θ32 −θ34)(θ̇32 + θ̇34)+

(−m3a4qa
3 +m31a4q31 +m32a4q32)sin(θ32 −θ4)(θ̇32 + θ̇4)+

(−m3a4qb
3 −m4a34q4)sin(θ34 −θ4)(θ̇34 + θ̇4)

Then when relations θ21 = θ2+β21, θ23 = θ2−β23, θ̇21 = θ̇23 = θ̇2, θ32 = θ3+β32,
θ34 = θ3−β34, and θ̇32 = θ̇34 = θ̇3 are substituted, the angular momentum equation
becomes

HS =

mtot{χ2
1 θ̇1 +χ2

2 θ̇2 +χ2
3 θ̇3 +χ2

4 θ̇4}+
(m1a21 p1 +m2a1 pa

2)cos(θ1 −θ2 −β21)(θ̇1 + θ̇2)+



174 6 Principal vector linkages for inherent shaking moment balance

((m3 +m4 +m41 +m42)a1a23 −m2a1 pb
2 +m21a1 p21 +

m22a1 p22)cos(θ1 −θ2 +β23)(θ̇1 + θ̇2)+

(m1a32 p1 −m2a1a32 +m3a1 pa
3 −m12a32 p12 −

m31a1 p31)cos(θ1 −θ3 −β32)(θ̇1 + θ̇3)+

(−m3a1 pb
3 +m4a1a34 +m41a1 p41)cos(θ1 −θ3 +β34)(θ̇1 + θ̇3)+

(−m1a4 p1 +(m2 +m3 +m21 +m31)a1a4 −m4a1 p4 +m12a4 p12 +

m13a4 p13 +m42a1 p42 +m43a1 p43)cos(θ1 −θ4)(θ̇1 + θ̇4)+

(m1a21a32 −m2a32 pa
2 +m11a32 p11)cos(θ2 −θ3 +β21 −β32)(θ̇2 + θ̇3)+

(−m1a21a4 +m2a4 pa
2 −m11a4 p11)cos(θ2 −θ4 +β21)(θ̇2 + θ̇4)+

(m2a32 pb
2 +m3a23 pa

3)cos(θ2 −θ3 −β23 −β32)(θ̇2 + θ̇3)+

(−m3a23 pb
3 +m4a23a34 +m41a23 p41)cos(θ2 −θ3 −β23 +β34)(θ̇2 + θ̇3)+

(−m2a4 pb
2 +m3a23a4 −m4a23 p4 +m21a4 p21 +

m42a23 p42)cos(θ2 −θ4 −β23)(θ̇2 + θ̇4)+

(−m1a32a4 −m2a32a4 +m3a4 pa
3 −m11a32a4 −m12a32a4 −

m31a4 p31 −m32a4 p32)cos(θ3 −θ4 +β32)(θ̇3 + θ̇4)+ (6.33)
(−m3a4 pb

3 −m4a34 p4)cos(θ3 −θ4 −β34)(θ̇3 + θ̇4)+

(m1a21q1 +m2a1qa
2)sin(θ1 −θ2 −β21)(θ̇1 + θ̇2)+

(m2a1qb
2 −m21a1q21 −m22a1q22)sin(θ1 −θ2 +β23)(θ̇1 + θ̇2)+

(m1a32q1 +m3a1qa
3 −m12a32q12 −m31a1q31)sin(θ1 −θ3 −β32)(θ̇1 + θ̇3)+

(m3a1qb
3 −m41a1q41)sin(θ1 −θ3 +β34)(θ̇1 + θ̇3)+

(−m1a4q1 −m4a1q4 +m12a4q12 +m13a4q13 +m42a1q42 +

m43a1q43)sin(θ1 −θ4)(θ̇1 + θ̇4)+

(m2a32qa
2 −m11a32q11)sin(θ2 −θ3 +β21 −β32)(θ̇2 + θ̇3)+

(−m2a4qa
2 +m11a4q11)sin(θ2 −θ4 +β21)(θ̇2 + θ̇4)+

(m2a32qb
2 +m3a23qa

3)sin(θ2 −θ3 −β23 −β32)(θ̇2 + θ̇3)+

(m3a23qb
3 −m41a23q41)sin(θ2 −θ3 −β23 +β34)(θ̇2 + θ̇3)+

(−m2a4qb
2 +m21a4q21 −a23m4q4 +a23m42q42)sin(θ2 −θ4 −β23)(θ̇2 + θ̇4)+

(−m3a4qa
3 +m31a4q31 +m32a4q32)sin(θ3 −θ4 +β32)(θ̇3 + θ̇4)+

(−m3a4qb
3 −m4a34q4)sin(θ3 −θ4 −β34)(θ̇3 + θ̇4)

with mtot = m1+m2+m3+m4+m11+m12+m13+m14+m21+m22+m31+m32+
m41 +m42 +m43 +m44 and with the reduced inertias mtot χ2

1 , mtot χ2
2 , mtot χ2

3 , and
mtot χ2

4 written as

mtot χ2
1 = I1 + I12 + I13 + I14 +m1(p2

1 +q2
1)+m12(p2

12 +q2
12)+

m13(p2
13 +q2

13)+m14(p2
14 +q2

14)+ (6.34)
(m2 +m3 +m4 +m21 +m22 +m31 +m41 +m42 +m43)a2

1
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mtot χ2
2 = I2 + I11 + I21 + I22 +m1a2

21 +m2d2
2 +(m3 +m4 +m41 +m42)a2

23 +

m11(p2
11 +q2

11)+m21(p2
21 +q2

21)+m22(p2
22 +q2

22) (6.35)
mtot χ2

3 = I3 + I31 + I32 + I41 +m4a2
34 +m3d2

3 +(m1 +m2 +m11 +m12)a2
32 +

m41(p2
41 +q2

41)+m31(p2
31 +q2

31)+m32(p2
32 +q2

32) (6.36)
mtot χ2

4 = I4 + I42 + I43 + I44 +m4(p2
4 +q2

4)+m42(p2
42 +q2

42)+

m43(p2
43 +q2

43)+m44(p2
44 +q2

44)+ (6.37)
(m1 +m2 +m3 +m11 +m12 +m13 +m21 +m31 +m32)a2

4

where

d2
2 = (pa

2)
2 +(qa

2)
2 +(pb

2)
2 +(qb

2)
2 +2(−pa

2 pb
2 +qa

2qb
2)cos(β21 +β23)+

2(pa
2qb

2 + pb
2qa

2)sin(β21 +β23)

d2
3 = (pa

3)
2 +(qa

3)
2 +(pb

3)
2 +(qb

3)
2 +2(−pa

3 pb
3 +qa

3qb
3)cos(β32 +β34)+

2(pa
3qb

3 + pb
3qa

3)sin(β32 +β34)

with d2 the distance P2S2 and d3 the distance P3S3 as illustrated in Fig. 6.5. These
reduced inertia terms can be found also from the ELMSs of the individual motions
of the four relative DoFs, of which the ELMSs of DoF 2 and of DoF 3 are shown in
Fig. 3.28. They are calculated as the inertia of the masses in each ELMS about the
principal point together with the link inertias.

The final form of the angular momentum is obtained when the force balance
conditions (3.67) are substituted for m1 p1, m1q1, m2 pa

2, m2qa
2, m2 pb

2, m2qb
2, m3 pa

3,
m3qa

3, m3 pb
3, m3qb

3, m4 p4, and m4q4 which results in

HS =

mtot{χ2
1 θ̇1 +χ2

2 θ̇2 +χ2
3 θ̇3 +χ2

4 θ̇4 +

a1a21 cos(θ1 −θ2 −β21)(θ̇1 + θ̇2)+a1a32 cos(θ1 −θ3 −β32)(θ̇1 + θ̇3)−
a1a4 cos(θ1 −θ4)(θ̇1 + θ̇4)+a23a32 cos(θ2 −θ3 −β23 −β32)(θ̇2 + θ̇3)−
a23a4 cos(θ2 −θ4 −β23)(θ̇2 + θ̇4)−a4a34 cos(θ3 −θ4 −β34)(θ̇3 + θ̇4)}+
(−(m32 +m44)a1a21 −m11(a21 − p11)a1 −m12(a1 − p12)a21 −
m13(a1 − p13)a21 −m14(a1 − p14)a21)cos(θ1 −θ2 −β21)(θ̇1 + θ̇2)+

(−m44a1a32 −m13(a1 − p13)a32 −m14(a1 − p14)a32 − (6.38)
m32(a32 − p32)a1)cos(θ1 −θ3 −β32)(θ̇1 + θ̇3)+

(m14(a1 − p14)a4 +m44(a4 − p44)a1)cos(θ1 −θ4)(θ̇1 + θ̇4)+

(−(m13 +m14 +m43 +m44)a23a32 −m21(a23 − p21)a32 −m22(a23 − p22)a32 −
m31(a32 − p31)a23 −m32(a32 − p32)a23)cos(θ2 −θ3 −β23 −β32)(θ̇2 + θ̇3)+

(m14a23a4 +m22(a23 − p22)a4 +m43(a4 − p43)a23 +

m44(a4 − p44)a23)cos(θ2 −θ4 −β23)(θ̇2 + θ̇4)+

((m14 +m22)a4a34 +m41(a34 − p41)a4 +m42(a4 − p42)a34 +

m43(a4 − p43)a34 +m44(a4 − p44)a34)cos(θ3 −θ4 −β34)(θ̇3 + θ̇4)+
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(m11a1q11 +a21(m12q12 +m13q13 +m14q14))sin(θ1 −θ2 −β21)(θ̇1 + θ̇2)+

(m13a32q13 +m14a32q14 +m32a1q32)sin(θ1 −θ3 −β32)(θ̇1 + θ̇3)+

(−m14a4q14 −m44a1q44)sin(θ1 −θ4)(θ̇1 + θ̇4)+

((m21q21 +m22q22)a32 +

(m31q31 +m32q32)a23)sin(θ2 −θ3 −β23 −β32)(θ̇2 + θ̇3)+

(m22a4q22 +m43a23q43 +m44a23q44)sin(θ2 −θ4 −β23)(θ̇2 + θ̇4)+

(−a4m41q41 −a34(m42q42 +m43q43 +m44q44))sin(θ3 −θ4 −β34)(θ̇3 + θ̇4)

Also here the first part of the angular momentum is mainly related to the four prin-
cipal elements with

HS,P = mtot{χ2
1 θ̇1 +χ2

2 θ̇2 +χ2
3 θ̇3 +χ2

4 θ̇4 +

a1a21 cos(θ1 −θ2 −β21)(θ̇1 + θ̇2)+a1a32 cos(θ1 −θ3 −β32)(θ̇1 + θ̇3)−
a1a4 cos(θ1 −θ4)(θ̇1 + θ̇4)+a23a32 cos(θ2 −θ3 −β23 −β32)(θ̇2 + θ̇3)−
a23a4 cos(θ2 −θ4 −β23)(θ̇2 + θ̇4)−a4a34 cos(θ3 −θ4 −β34)(θ̇3 + θ̇4)}

From the angular momentum the moment balance condition of the 4-DoF principal
vector linkage in Fig. 6.5 is found as:

mtot(χ2
1 θ̇1 +χ2

2 θ̇2 +χ2
3 θ̇3 +χ2

4 θ̇4)+((mtot −m32 −m44)a1a21 −
m11(a21 − p11)a1 −m12(a1 − p12)a21 −m13(a1 − p13)a21 −
m14(a1 − p14)a21)cos(θ1 −θ2 −β21)(θ̇1 + θ̇2)+ (6.39)
((mtot −m44)a1a32 −m13(a1 − p13)a32 −m14(a1 − p14)a32 −
m32(a32 − p32)a1)cos(θ1 −θ3 −β32)(θ̇1 + θ̇3)+

(−mtota1a4 +m14(a1 − p14)a4 +m44(a4 − p44)a1)cos(θ1 −θ4)(θ̇1 + θ̇4)+

((mtot −m13 −m14 −m43 −m44)a23a32 −m21(a23 − p21)a32 −m22(a23 − p22)a32 −
m31(a32 − p31)a23 −m32(a32 − p32)a23)cos(θ2 −θ3 −β23 −β32)(θ̇2 + θ̇3)+

(−(mtot −m14)a23a4 +m22(a23 − p22)a4 +m43(a4 − p43)a23 +

m44(a4 − p44)a23)cos(θ2 −θ4 −β23)(θ̇2 + θ̇4)+

(−(mtot −m14 −m22)a4a34 +m41(a34 − p41)a4 +m42(a4 − p42)a34 +

m43(a4 − p43)a34 +m44(a4 − p44)a34)cos(θ3 −θ4 −β34)(θ̇3 + θ̇4)+

(m11a1q11 +a21(m12q12 +m13q13 +m14q14))sin(θ1 −θ2 −β21)(θ̇1 + θ̇2)+

(m13a32q13 +m14a32q14 +m32a1q32)sin(θ1 −θ3 −β32)(θ̇1 + θ̇3)+

(−m14a4q14 −m44a1q44)sin(θ1 −θ4)(θ̇1 + θ̇4)+

(m21a32q21 +m22a32q22 +m31a23q31 +

m32a23q32)sin(θ2 −θ3 −β23 −β32)(θ̇2 + θ̇3)+

(m22a4q22 +m43a23q43 +m44a23q44)sin(θ2 −θ4 −β23)(θ̇2 + θ̇4)+

(−a4m41q41 −a34(m42q42 +m43q43 +m44q44))sin(θ3 −θ4 −β34)(θ̇3 + θ̇4) = Λ
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with constant Λ ∈ ℜ.

Moment balance solutions

With an increasing number of DoFs, there is an increasing number of possible so-
lutions to have the moment balance condition (6.39) hold. For example for Λ = 0,
when for a symmetric opposite motion of principal elements 1 and 4, and a sym-
metric opposite motion of principal elements 2 and 3 θ4 = π −θ1, and θ3 = π −θ2
and θ̇4 = −θ̇1 and θ̇3 = −θ̇2. Then when the design has the specific symmetries
β32 = β23 and β34 = β21, the moment balance condition (6.39) reduces to

mtot(χ2
1 −χ2

4 )θ̇1 +mtot(χ2
2 −χ2

3 )θ̇2 +((mtot −m32 −m44)a1a21 −
m11(a21 − p11)a1 −m12(a1 − p12)a21 −m13(a1 − p13)a21 −m14(a1 − p14)a21 +

(mtot −m14 −m22)a4a34 −m41(a34 − p41)a4 −m42(a4 − p42)a34 −
m43(a4 − p43)a34 −m44(a4 − p44)a34)cos(θ1 −θ2 −β21)(θ̇1 + θ̇2)−
((mtot −m44)a1a32 −m13(a1 − p13)a32 −m14(a1 − p14)a32 − (6.40)
m32(a32 − p32)a1 − (mtot −m14)a23a4 −m22(a23 − p22)a4 −
m43(a4 − p43)a23 −m44(a4 − p44)a23)cos(θ1 +θ2 −β23)(θ̇1 − θ̇2)+

(m11a1q11 +a21(m12q12 +m13q13 +m14q14)+

a4m41q41 +a34(m42q42 +m43q43 +m44q44))sin(θ1 −θ2 −β21)(θ̇1 + θ̇2)−
(m13a32q13 +m14a32q14 +m32a1q32 −
m22a4q22 −m43a23q43 −m44a23q44)sin(θ1 +θ2 −β23)(θ̇1 − θ̇2) = 0

A set of moment balance conditions then is obtained as

θ4 = π −θ1

θ3 = π −θ2

β32 = β23

β34 = β21 (6.41)
χ2

1 = χ2
4

χ2
2 = χ2

3

(mtot −m32 −m44)a1a21 −m11(a21 − p11)a1 −m12(a1 − p12)a21 −
m13(a1 − p13)a21 −m14(a1 − p14)a21 +(mtot −m14 −m22)a4a34 −
m41(a34 − p41)a4 −m42(a4 − p42)a34 −m43(a4 − p43)a34 −
m44(a4 − p44)a34 = 0
(mtot −m44)a1a32 −m13(a1 − p13)a32 −m14(a1 − p14)a32 −
m32(a32 − p32)a1 − (mtot −m14)a23a4 −m22(a23 − p22)a4 −
m43(a4 − p43)a23 −m44(a4 − p44)a23 = 0



178 6 Principal vector linkages for inherent shaking moment balance

m11a1q11 +a21(m12q12 +m13q13 +m14q14)+

a4m41q41 +a34(m42q42 +m43q43 +m44q44) = 0
m13a32q13 +m14a32q14 +m32a1q32 −m22a4q22 −
m43a23q43 −m44a23q44 = 0

With this solution the principal vector linkage with four DoFs has become a dy-
namically balanced mechanism with two DoFs. An example of such a mechanism
is shown in chapter 7.

6.2 Moment balance conditions of closed-chain principal vector
linkages

When a closed-chain principal vector linkage is obtained by closing an open-chain
principal vector linkage with the open-chain method, then the angular momentum
of the linkage is known from the open-chain principal vector linkage. For instance
the angular momentum of the linkage in Fig. 4.1 is written with (6.38) and the
moment balance conditions follow from (6.39). Therefore the open-chain method
can be used to derive a variety of inherently moment-balanced linkages.

Considering the loop closure relations to obtain the angular momentum of inher-
ent closed-chain principal vector linkages, such as in Fig. 4.11, is more challenging.
It was shown that to derive the force balance conditions (i.e. to define the princi-
pal vector linkage) one element in a closed chain can be modeled with equivalent
masses. To find the angular momentum this way, the equivalent model should not
only be mass equivalent but also inertia equivalent. In other words, a dynamic equiv-
alent model of one element in a closed chain is needed.

The mass equivalent models in Fig. 4.10b and Fig. 4.10c have a specific inertia
about their CoMs, but they are both different and they in general do not equal the real
inertia of the element. In case that the real inertia is equal to one of them, would this
mean that the angular momentum of the element then is considered with the inertias
of the masses that are projected in the mass equivalent principal chain? Although
it is technically possible to adapt the virtual equivalent mass and its location in the
mass equivalent models to fit the real inertia of the element, for a mass symmetric
element where the virtual equivalent mass is zero this is not possible and the inertia
of the element then is determined as ma

i e2
i +mb

i (li−ei)
2. Therefore is seems that still

something is missing in the development of a general dynamic equivalent model of
an element in a closed chain.

It is known from literature that an element can be modeled dynamically equiv-
alent when the inertia of the (real) equivalent masses in the joints equals the real
inertia of the element [108]. When this is applied for the closed-chain princi-
pal vector linkage in Fig. 4.11, then the dynamic equivalent model of the mass-
symmetric element A0A3 where f4 = 0 becomes as in Fig. 6.6, which has an iner-
tia I4 = ma

4e2
4 +mb

4(l4 − e4)
2. This means that with the two real equivalent masses
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in the MEPC in Fig. 4.12a, inertia I4 is included and the ELMS of each relative
DoF becomes as in Fig. 6.7, which are combined from the ELMSs in Fig. 4.19,
Fig. 4.20, and Fig. 6.4. The angular momentum of the MEPC is found with (6.25)
with mtot = m1 +m2 +m3 +m4 +m11 +m12 +m13 +m31 +m32 +m33 and with the
reduced inertias mtot χ2

1 , mtot χ2
2 , and mtot χ2

3 written as

mtot χ2
1 = I1 + I12 + I13 +m1(p2

1 +q2
1)+mb

4a′21 +(m2 +m3 +ma
4 +m31 +m32)a2

1

m12(p2
12 +q2

12)+m13(p2
13 +q2

13) (6.42)
mtot χ2

2 = I2 + I11 + I31 +(m1 +mb
4)a

2
21 +m2d2

2 +(m3 +ma
4)a

2
23 +

m11(p2
11 +q2

11)+m31(p2
31 +q2

31) (6.43)
mtot χ2

3 = I3 + I32 + I33 +m3(p2
3 +q2

3)+ma
4a′23 +(m1 +m2 +mb

4 +m11 +m12)a2
3 +

m32(p2
32 +q2

32)+m33(p2
33 +q2

33) (6.44)

These reduced inertias are the inertias of the ELMSs in Fig. 6.7 about their CoM.
The next question is how to model a mass-symmetric element where I4 ̸=

ma
4e2

4 + mb
4(l4 − e4)

2 such that it can be included in the MEPC. The model with
solely two real equivalent masses in the joints then is not applicable. Maybe the
real equivalent masses can also be modeled outside the joints in locations based on
scaled dimensions to fit the real inertia of the element. Or there could be other (neg-
ative) (virtual) equivalent masses to model the inertia with. Subsequently, how can
an element with two joints and with an arbitrary CoM where f4 ̸= 0 be modeled dy-
namically equivalent? Do the virtual equivalent masses also have rotational inertia?
These are open questions that need further investigation.

As an illustration, the dynamic simulations in Fig. 4.21 and Fig. 5.20 show dy-
namically balanced motions since the two applied torques are equal and opposite
with which the resultant moment in the base is zero.

6.3 Discussion and conclusion

This chapter showed that the angular momentum of principal vector linkages can be
written with reduced inertias and principal dimensions from which moment balance
conditions can be derived. A pantograph, an open-chain principal vector linkage of
three principal elements in series, and an open-chain principal vector linkage of four

A3

A0

S4 e4
m

a

4

m
b

4

l
4

Fig. 6.6 Dynamic equivalent model of a mass symmetric element A0A3 where f4 = 0.
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principal elements in series were investigated. The same approach can be applied for
principal vector linkages with more principal elements, in series or in parallel.

Deriving the angular momentum equation in its final form becomes cumbersome
especially when the number of relative DoFs increases. However, for each principal
vector linkage it only has to be derived once. For all mechanism solutions that are
subsequently synthesized from a principal vector linkage, the angular momentum
equation only has to be adapted.

Since in general the angular momentum of a principal vector linkage is not zero,
shaking moment balance can only be obtained by reducing the DoFs. It was shown
how linear relations among the relative DoFs can be included to derive specific
sets of moment balance conditions. Still it remains a challenging puzzle to derive
moment balance solutions, especially when nonlinear relations among the relative
DoFs have to be considered. For instance, it should be possible to derive the mo-
ment balance solutions of the 4R four-bar mechanism as in [85, 78] from a 3-DoF
principal vector linkage of which the three DoFs are nonlinearly related. Tools to
do this are desired. Because of the specific compact form of the angular momentum
equation, this approach has the potential to be simpler than current methods such as
in [85, 78] that are complex and hard to apply for synthesis.
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Fig. 6.7 ELMS of each relative DoF of the closed-chain principal vector linkage in Fig. 4.11 with
mass-symmetric element A0A3 from which the three reduced inertias are found. The mass m4 and
the inertia I4 of element A0A3 are included with the real equivalent masses ma
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4.
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Also closed-chain principal vector linkages were considered, where the angular
momentum of a mass equivalent principal chain was found only for the specific case
that the inertia of the equivalently modeled element equals the inertia of the two real
equivalent masses about their CoM. The development of an inertia equivalent model
of a general element in a closed chain with which its inertia is included in the mass
equivalent principal chain requires further investigation.





Chapter 7
Synthesis of inherently dynamically balanced
(IDB) mechanisms

Abstract The method of principal vector linkages is presented in this chapter for
the kinematic synthesis of inherently dynamically balanced mechanisms from prin-
cipal vector linkage architectures. For specific tasks and functions, dynamic balance
solutions are derived by various methods, including changing the parameters of the
elements, eliminating elements, reduction of DoFs, introducing gears and sliders,
and by combining them. Examples of dynamically balanced graspers and manip-
ulators are presented together with examples of force-balanced movable structures
such as a bridge and a roof.

7.1 Approach for synthesis of IDB mechanisms

Synthesis of inherently balanced mechanisms can be approached in two ways. In
chapter 2 it was shown how with the method of linearly independent linear momen-
tum inherent and advantageous force balance solutions can be obtained of initial
kinematic architectures. Then for specific kinematic conditions the geometric pa-
rameters of the linkage are adapted, i.e. by rearranging the locations of the base
pivots and by changing the dimensions of the elements together with the mass pa-
rameters.

Another approach for synthesis is to derive balanced mechanisms from principal
vector linkage architectures such as those in chapters 3-6, which will be named the
method of principal vector linkages. Principal vector linkage architectures are force
balanced and can be adapted kinematically in various ways, e.g. for path, motion or
function generation, while maintaining the essential kinematic relations for balance.
For moment balance the relative motions of a principal vector linkage architecture
have to be constrained by additional elements.

Principal vector linkage architectures can be adapted by redesigning the principal
vector links and their locations such as in Fig. 3.18 and Fig. 3.20. From architec-
tures that are overconstrained such as in Fig. 5.7, balanced mechanism solutions can
be derived by eliminating redundant links. Under certain conditions it is also pos-
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184 7 Synthesis of inherently dynamically balanced (IDB) mechanisms

sible to exchange links with other mechanism elements such as sliders and gears,
to replace joints with other types of joints, and to fix or merge links to reduce the
relative motions. Balanced mechanism solutions can be obtained also by combining
principal vector linkage architectures.

Since dynamic balance is all about similar opposite motion of masses and iner-
tias, this aspect can assist in finding solutions intuitively. From a kinematic point
of view elements need to counter-rotate and to counter-translate with respect to one
another to obtain balance. In general, the more the motions are similar and oppo-
site, the better the balanced solution can be. The level of similar opposite motions
depends on the mass distribution in each element. Moment balance solutions can
be obtained by combining force-balanced linkages such that their elements counter-
rotate.

The following sections illustrate the synthesis approach from principal vector
linkage architectures with engineering examples of inherently balanced mecha-
nisms.

2

1

a)

b) c)

B2

S

A2

C2 C1

Fig. 7.1 Synthesis of a 2-DoF shaking-force and shaking-moment-balanced grasper mechanism
from the 4-DoF principal vector linkage in Fig. 3.23 by including a slider element in A2 and B2.
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7.2 Synthesis of an IDB 2-DoF grasper

A common end-effector of pick and place machines and manipulators is a grasper or
gripper. When a grasper is not dynamically balanced, because of the accelerations of
the manipulator the motion of backdrivable and underactuated fingers is perturbed
and grasping difficulties can be experienced such as losing grip, losing control, and
damaging the grasped object.

When a grasper is dynamically balanced, the motions of the manipulator do not
affect the relative (internal) motions of the grasper and the fingers. The grasper then
is dynamically decoupled from the manipulator: instead of dangling like multiseg-
mented pendula, the fingers move along with the manipulator as a rigid body. This
means that the actuators of the grasper mechanism are not perturbed by the manipu-
lator motion and the control of the grasping motion is simpler. With force balance
actuators also do not need to compensate for gravity. Therefore, when dynamically

com

Fig. 7.2 Prototype of an 1-DoF inherently dynamically balanced grasper mechanism where the
orientation of the fingers can be adapted manually by relocating joints C1 and C2 within the base.

http://www.kineticart.nl/DynBalGrasper
http://www.kineticart.nl/DynBalGrasper
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balanced, underactuated or backdrivable graspers can perform pick and place tasks
faster and with increased accuracy.

For an end-effector for high-speed manipulation a low mass is of particular im-
portance. A low inertia of the grasping motion is only of importance if this motion is
at high speed too. In practice however grasping motions have relatively low speeds.

An inherently dynamically balanced 2-DoF grasper can be synthesized from the
4-DoF principal vector linkage in Fig. 3.23 and Fig. 6.5. Figure 7.1 shows the con-
ceptual design of a possible result. With slider elements in A2 and B2 the motion of
the 4-DoF principal vector linkage is reduced such that the left side and the right
side of the mechanism move similarly and oppositely. The path of the sliders is a
line through S, which is the CoM of all elements for the force balance conditions
(3.67) where the mass of the sliders can be included in their connecting links. For the
moment balance conditions (6.41) the grasper mechanism is dynamically balanced
for both relative motions.

The motion of the slider in B2 relative to S determines the rotational motion of
the fingers, while the relative motion between the sliders in A2 and B2 determines
the translational motion of the fingers. With these motions, illustrated in Fig. 7.1a-
b-c, various large grasps and precision grasps are possible. To move the slider in A2
an actuator 1 can be included to act in between A2 and S, while an actuator 2 could
be implemented to act in between C1 and C2 such that these points can cross-over
without kinematic problems.

The design can be developed further for instance by integrating links SC1, C1B2,
B2C2, and C2S with actuator 2 to reduce the complexity in this area. If the rotational
motion of the fingers is not needed, these links can be merged with the base. This
was accomplished in the prototype grasper in Fig. 7.2. It has 1-DoF dynamically
balanced motion and the orientation of the fingers can be adapted manually by re-
locating the joints C1 and C2. Various other changes are possible to optimize the
design. Elements can be designed asymmetrically, for instance to adapt to specific
product shapes, compactness can be improved, or additional components such as
electric cables or sensors on the moving elements can be included in the balance.

The grasper mechanism can also be transformed into a compliant dynamically
balanced grasper mechanism where the revolute pairs are designed as flexible joints.
Another application for grasping is, for example, in suction naps where the grasper
mechanism (or a principal vector linkage in general) may be integrated as reinforce-
ment of the flexible material to impose the suction nap to move in a balanced way.

7.3 Synthesis of multi-DoF IDB manipulators

The transfer of components from one part of the machine to another or the pick
and place in assembly processes are frequent industrial tasks, for instance in printed
circuit board assembly. To keep the costs per product low, low cycle times are re-
quired. A manipulator then has to act at high speeds with short settling times while
accuracy and precision have to be maintained.
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With a high-speed dynamically balanced manipulator base vibrations remain low
and do not perturb metrology tools and other parts of the system (and other systems)
that are mounted on the same base, with which settling times can be reduced. In this
application low inertia solutions are important for low actuator torques. A low mass
is not of specific importance since the total mass of the balanced manipulator is
stationary in the base and the base is stationary too.

An inherently dynamically balanced planar 4-RRR parallel manipulator can be
synthesized by combining two balanced pantographs as shown in Fig. 7.3. Each pan-
tograph in Fig. 7.3a is force balanced for the conditions (3.2) where each pantograph
can include part of the mass of the platform. Subsequently each pantograph can be
divided in two parts which are placed at a certain offset as shown in Fig. 7.3b with
the platform connecting them together. As long as the relative motions of the ele-
ments are not changed, which is for all translational motion of the platform, force
balance is maintained. The moment balance conditions can be obtained from the
sum of the angular momentum of each pantograph (6.8) and the angular momentum
of the platform. Then it is obtained that when all links have equal lengths, links AiBi
have equal inertia, and links BiCi have equal inertia, the manipulator in Fig. 7.3b
is shaking moment balanced for motion along the orthogonal axes with non-rotated
platform.

This configuration can also be synthesized from the configuration in Fig. 2.29a
with the force balance conditions (2.51) by relocating the pivots in the base. For
rotational motion of the platform the links do not remain parallel and exact force
balance is not obtained. Also for rotational motion of the platform and for motion
off the orthogonal axes exact moment balance is not obtained. Since for these mo-
tions the links remain close to parallel and move around the orthogonal axes, it can
be expected that the obtained force and moment balance still is significant. In fact,
motion with non-rotated platform along the diagonal axes in Fig. 7.3b is near to
exact dynamic balance since the links counter-rotate almost linearly with one an-
other. Regarding dynamic balance, this manipulator is most suitable for tasks where
perfect translational motion of the platform is required and is obtained by accurate
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Fig. 7.3 a) By combining two balanced pantographs that are placed oppositely of one another an
b) inherently dynamically balanced 4-RRR parallel manipulator can be synthesized where each
pantograph is divided in two with the platform connecting the parts together.
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control of the rotational motion of the platform to compensate for issues such as
production inaccuracies and clearance.

Figure 7.4 shows a prototype of the inherently dynamically balanced planar
4-RRR manipulator that was developed and built. For optimal force transmission
to the platform and for compactness, the platform was reduced kinematically to
a link with two double revolute pairs on each side (C1 and C2 coincide with C3
and C4, respectively). This configuration will be named the DUAL-V manipulator.
With an actuator in each of the four pivots with the base, the manipulator has one
degree of actuation redundancy. This is advantageous since manipulators with actu-
ation redundancy have an increased acceleration capability and have more homoge-
neous dynamic characteristics (e.g. force transmission to the platform) throughout
the workspace [35].

About each pivot with the base a counter-mass is applied to tune the mass distri-
bution of the links connecting the base such that a low inertia of the manipulator is
obtained. This means that their mass should be as high as possible since then their
CoMs are located the closest to their center of rotation (i.e. closest to the pivot). This
results into a large design of the counter-masses. An evaluation of the DUAL-V ma-
nipulator is presented in the next chapter.

Solutions of inherently balanced manipulators can also be derived from the prin-
cipal vector linkage architecture in Fig. 5.7. Figure 7.5a shows for instance a 3-DoF
mechanism solution without elements A0A3, D8E8, and D9E9, and Fig. 7.5b shows
a 2-DoF mechanism solution without the principal vector links and where the func-

Fig. 7.4 Prototype of the balanced planar 4-RRR manipulator DUAL-V, redundantly actuated with
four actuators, with counter-masses about the fixed pivots and with the platform reduced to a link
with two double revolute pairs on each side.

http://www.kineticart.nl/DUAL-V
http://www.kineticart.nl/DUAL-V
http://www.kineticart.nl/DUAL-V
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tion of element D9E9 is maintained by a combination of three gears. The mass of
the gears can be included in the element to which they are pivoted and their inertia
can be included in the elements that determine their rotational motion.

Another inherently balanced mechanism solution that can be derived from the
principal vector linkage architecture in Fig. 5.7 is shown in Fig. 7.6. Here elements
P2B2, P3B2, SB2, A6A7, D8E8, and D9E9 were eliminated, link P1B1 shortened, link
P2B1 shifted to the left, and element A5A6 was extended to the left.

New principal vector linkage architectures can be created by combining prin-
cipal vector linkages. Figure 7.7 shows an architecture that can be obtained when
two 3-DoF principal vector linkages in Fig. 4.6 are combined by connecting them
in their similarity points A0, A3, and S and merging their outer elements 1 and 3.
The illustrated triangle of the similarity points remains similar for all motion of the
mechanism. Links B1S and B′

1S, and B2S and B′
2S can also be merged, respectively,

since their motions are equal.
From the principal vector linkage architecture in Fig. 7.7 various inherently bal-

anced solutions can be derived, for instance the solution shown in Fig. 7.8a. Here
elements A2A3, P2B2, B2P3, B2SB′

2, P′
2B′

2, and B′
2P′

3 were eliminated. The obtained

com
com

A1 A2 A1 A2

A5 A6

A0 A4 A7 A3

Fig. 7.5 Synthesis examples from the principal vector linkage architecture in Fig. 5.7 (a) without
elements A0A3, D8E8, and D9E9 and (b) without the principal vector links and element D9E9
replaced with three gears.
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Fig. 7.6 Synthesis example from the principal vector linkage architecture in Fig. 5.7 without ele-
ments P2B2, P3B2, SB2, A6A7, D8E8, and D9E9, and with link P1B1 shortened, link P2B1 shifted to
the left, and element A5A6 extended to the left.
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Fig. 7.7 Principal vector linkage architecture obtained by combining two 3-DoF principal vector
linkages in Fig. 4.6 by connecting their similarity points A0, A3, and S and merging their outer
elements 1 and 3. This results in a focal mechanism with the common CoM in focal point S.

solution can also be regarded a combination of two pantographs as in Fig. 3.6c
where one principal element is shared, with the difference that here the common
CoM is in an invariant point in a single link instead of in a third pantograph. There-
fore this solution has 2-DoF motion, which is one less than in Fig. 3.6c.

Figure 7.8b shows a 2-DoF mechanism solution that is derived from Fig. 7.7 by
eliminating elements P1B1, P2B1, P′

2B′
2, and P′

3B′
2. This solution can be regarded a

combination of two pantographs opposite of one-another, connected in the middle
with a dyad of which the middle joint is the common CoM.
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Fig. 7.8 Synthesis examples from the principal vector linkage architecture in Fig. 7.7 without
elements (a) A2A3, P2B2, B2P3, B2SB′
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3 and (b) P1B1, P2B1, P′
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2, and P′
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2.
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The architecture in Fig. 7.7 can be considered a new type of focal mechanism,
which is an overconstrained but movable linkage [40]. Characteristic of this focal
mechanism is that the focal point coincides with the common CoM, which are both
in joint S. Another balanced focal mechanism is obtained when two of the bal-
anced pantographs in Fig. 4.7 are combined by connecting them in their similarity
points. This results in a balanced version of Burmester’s focal mechanism where the
common CoM is in the focal point. Also from this architecture inherently balanced
mechanism solutions can be derived.

7.4 Synthesis of large-size balanced devices

For the motion of large-size mechanisms such as movable bridges and movable
roofs, force balance is important to reduce actuation power and to increase safety.
No actuation power is needed to keep a force-balanced mechanism in position and
with failure of the drive system it will not start to move on its own (i.e. not fall
down). In force balance solutions for large-size mechanisms a low mass is preferred.

The design of the counter-masses in movable bascule bridges is often challeng-
ing. When they are mounted about the horizontal axis of rotation of the deck, they
need significant space within the ground. A common solution is to apply them on
a mechanism above the ground as shown in the bascule bridge in Fig. 1.11. There
are various designs of counter-masses in movable bascule bridges and vertical lift
bridges [63, 62, 68]. An advanced design is for instance the ”Heel Trunnion Bas-
cule” where the balancing is based on a pantograph linkage with counter-mass such
that the bridge remains compact when opened [68].

An example of balanced movable bridges without a counter-mass are Swing-
bridges that rotate horizontally about a vertical axis in the center of mass [63]. The
only bascule bridge that was found balanced without a counter-mass is the Mil-
waukee bascule bridge shown in 7.9, which was built in the 1890s in Milwaukee,
Wisconsin, US, and removed in 1929 [68]. This bridge opens by sliding the rear

Fig. 7.9 The Milwaukee bascule bridge (built in the 1890s, removed in 1929) which was balanced
without counter-mass [68].
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end of the bridge down along a curved path for which the overall mass of the bridge
remains at about the same height.

For the synthesis of force-balanced bascule bridges without counter-mass, new
solutions can be derived from the balanced pantograph linkage in Fig. 3.2. For in-
stance in Fig. 7.10 a solution is shown which is obtained when the pantograph
mechanism is divided in two parts that are place apart, similarly to the DUAL-V
in Fig. 7.3. Both parts are connected on top by the base and below with a slider
element. The mechanism opens and closes by moving the slider hence an forth the
straight path.

The mechanism in Fig. 7.10 will be named a Double Wing-type bascule bridge,
referring to each side as a wing. A Double Wing-type bridge can span two separate
waterways while it can be driven with a single actuator. The Double Wing-type
bridge can be both force and moment balanced by which it also does not exert static
horizontal forces and static moments to the base. Therefore it can be placed on a
single pillar that mainly has to resist the weight of the bridge.

Figure 7.11a shows how the Double Wing-type bascule bridge can also be de-
signed for slopes with a straight vertical sliding path. In Fig. 7.11b a single Wing-
type mechanism is shown which, contrary to the double Wing-type mechanism, ex-
erts a static moment to the base. Figure 7.11c shows how another point in the wing
element can be used as a slider where the curvature of the slider path is obtained by
tracing the selected point while sliding along the straight path. When compared to
the bascule bridge in Fig. 7.9, this solution has a shorter strut supporting the deck
which is located above the deck and loaded in tension, where in Fig. 7.9 the strut
reaches towards the end of the deck from underneath, obstructing traffic to pass un-
derneath, and is loaded in compression. Figure 7.11d shows a balanced Wing-type
mechanism solution where both elements share part of the deck.

To investigate the applicability of the Wing-type bascule bridge, together with
Hollandia, a Dutch corporate in bridge engineering, a conceptual design of the
Wing-type bascule bridge in Fig. 7.12 was developed. The configuration in Fig. 7.11b
was taken as a starting point. In finding the best compromise between force balance
and wind loads acting on the opened bridge, the resulting design has not become

Fig. 7.10 Double Wing-type bascule bridge synthesized from the 2-DoF principal vector linkage
in Fig. 3.2, spanning two sides and located on a single pillar.
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exactly force balanced. While the driving force is increased due to unbalance, the
surface the wind acts upon is reduced since the deck moves down further. To limit
the axial forces within the struts, they were designed longer and are pivoted at a spe-
cific height for which the angle between the struts and the deck remains sufficiently
large.

Other advantages of the Wing-type bascule bridge were found in energy saving
since linear guides such as rack and pinions are energy friendly gears as compared to
hydraulic drives, and the simplicity of the design which makes it a low cost solution.
The space required for the deck to move down is relatively small but deep. A higher
road level therefore is advantageous.

In architecture force-balanced mechanisms can be applied to obtain movable
buildings. For instance in Fig. 7.13 the conceptual design of the Inside-out house
is presented, a building where inside and outside become one. Both the left side and
the right side of the house act as a force-balanced pantograph mechanism where part
of the roof and the side-wall balance one another. The pantographs are connected in
the top of the roof. Because of force balance the top of the roof can be moved down
with minimal effort by which the walls move up and the building opens itself.

In Fig. 7.14 dynamic balance solutions are shown where principal vector link-
ages are combined spatially. Figure 7.14a shows how 5 pantographs-halves can be
connected along the central axis to obtain a 1-DoF balanced mechanism. When the
top is moved, the common CoM is stationary in the connecting point with the shaft.
Similarly 5 halves of a 3-DoF principal vector linkage can be combined as shown
in Fig. 7.14b, and 5 halves of a 4-DoF principal vector linkage can be combined as

b) c) d)

a)

Fig. 7.11 a) Double Wing-type bascule bridge for slopes; b) Single Wing-type bascule solution; c)
The slider trajectory can be straight or curved; d) Wing-type bascule solution where both elements
share part of the deck.
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shown in Fig. 7.14c and 7.14d. These foldable devices can have 2-DoF and 3-DoF
dynamically balanced motions, respectively.

7.5 Discussion and conclusion

In this chapter the synthesis of inherently dynamically balanced (IDB) mechanisms
from principal vector linkage architectures was investigated. A conceptual design
of an IDB 2-DoF grasper mechanism was derived from a 4-DoF principal vector
linkage by introducing slider elements (Fig. 7.1). A 3-DoF IDB parallel manipu-
lator was synthesized by combining two divided 2-DoF principal vector linkages
(Fig. 7.3). Some other manipulator solutions were obtained from a principal vector
linkage architecture by eliminating links (Fig. 7.5a), exchanging a link with gears
(Fig. 7.5b), and by redesigning links to relocate joints (Fig. 7.6). These results are
the first step in the kinematic synthesis of IDB mechanisms. Subsequently the de-
signs can be optimized for detailed kinematic requirements.

It was shown that principal vector linkages can be combined in various ways.
Where in Fig. 7.13 two 2-DoF principal vector linkages were simply connected, in
Fig. 7.3 and Fig. 7.10 two 2-DoF principal vector linkages were connected and di-
vided, in Fig. 7.7 two 3-DoF principal vector linkages were combined and partly
merged by application of the similarity points, and in Fig. 7.14 parts of princi-
pal vector linkages were combined. Other strategies for combining principal vector
linkages may exist, leading to a variety of IDB mechanism solutions that can be
synthesized.

The DUAL-V manipulator was designed for a low inertia which was achieved
with counter-masses about the fixed pivots. The manipulator solutions in Fig. 7.5,
Fig. 7.6, and Fig. 7.8 are typically low mass solutions instead of low inertia solutions
since they consist of relatively long elements located relatively far from the common
CoM of which the mass can be low. These mechanisms have a single pivot with the
base about which a counter-mass could be applied advantageously, however the ef-
fect of this is limited. When the element in which common CoM is located is fixed
with the base more fixed pivots are obtained and more counter-masses can be in-
cluded advantageously to lower the inertia. Since then the motion of the mechanism
is reduced, this solution is interesting for synthesis with higher DoF principal vec-
tor linkage architectures. Multiple fixed pivots are obtained naturally by combining
principal vector linkages as was shown for the DUAL-V.

The mechanism solutions in Fig. 7.10 and Fig. 7.11 were considered in the con-
text of bascule bridges, but they can also have other applications such as foldable
devices or as real wings in flying devices. They can be fully dynamically balanced.
The solutions in Fig. 7.14 can be developed also for example as dynamically bal-
anced graspers or as dynamically balanced floating devices.
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Fig. 7.12 Conceptual design of the Wing-type bascule bridge (Conceptual design together with
Gerard Bouwman & Martijn van Dijk, Hollandia, 2012)

http://www.kineticart.nl/vleugelbrug
http://www.kineticart.nl/vleugelbrug
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Fig. 7.13 Conceptual design of the Inside-out house where the walls and the roof are movable and
balanced, synthesized from two 2-DoF balanced pantographs. (see: www.kineticart.nl)

a)

d)

b)

c)

Fig. 7.14 Dynamically balanced foldable devices synthesized from (a) the 2-DoF pantograph; (b)
the 3-DoF principal vector linkage; (c-d) the 4-DoF principal vector linkage (shown in two poses).

http://kineticart.nl/?page=binnenstebuitenhuis


Chapter 8
Experimental evaluation of a dynamically
balanced redundant planar 4-RRR parallel
manipulator

Abstract In this chapter an approach for the evaluation of high-speed dynamically
balanced parallel manipulators is presented and applied to a comparative experi-
mental investigation of a balanced and unbalanced DUAL-V planar 4-RRR paral-
lel manipulator. For precise simulation of the manipulator motion, the inverse dy-
namic model of the manipulator is derived and validated. Experiments show that the
balanced manipulator has up to 97% lower shaking forces and up to a 96% lower
shaking moment. For small inaccuracies of the counter-masses or for a small unbal-
anced payload on the platform, base vibrations may be considerable for high-speed
manipulation, however their values remain significantly low as compared to the un-
balanced manipulator. For the balanced manipulator the actuator torques are about
1.6 times higher and the bearing forces are about 71% lower as compared to the
unbalanced manipulator.

8.1 Introduction

Most literature on dynamic balancing, both for mechanisms and for manipulators,
is theoretical, there are relatively few experimental results. Regarding serial manip-
ulators, the experiments on the PUMA-760 showed that shaking force balancing
reduced the actuator torques significantly since actuators do not have to compensate
gravity forces [30]. The inertia increased with balancing, but it was found that the ac-
tuator torques due to coulomb friction dominated, for which the inertia increase was
found acceptable. Because of lower actuator torques, it was experimentally shown
that shaking force balancing is advantageous for the accuracy of the dynamic iden-
tification of the unbalanced robot [72]. The balanced PUMA-760 also had a nine
times higher payload capacity, or the ability to move at double acceleration and at
about three times higher velocities [73].

Regarding parallel manipulators, in Ref. [5] a shaking-force-balanced parallel
mechanism based on the principal vector linkage of Fischer [53] was presented
and tested. Although presented as a balanced serial chain, it can be regarded as a

197
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force-balanced parallel manipulator. The center-of-mass (CoM) of the linkage is an
invariant point in one of the joints, which was verified by moving the mechanism in
a statically balanced way while measuring the joint angles.

In Ref. [58] a dynamically balanced 3-DoF planar parallel manipulator was pre-
sented and tested. The manipulator was composed of two independently force-
balanced parallelograms pivoted to the base and coupled with an end-effector
link. Shaking moment balance was achieved with separate counter-rotating inertias
(inertia-wheels). The manipulator was suspended by vertical cables which allowed
it to float within the horizontal plane and it was actuated at a low speed correspond-
ing to the eigenmotion of this suspension. The motion of a point in the base of the
manipulator was measured to verify the balance performance.

The goal of this chapter is to present an approach for the evaluation of high-speed
dynamically-balanced parallel manipulators, and to apply this approach for a com-
parative experimental investigation of the balanced and the unbalanced DUAL-V
planar 4-RRR parallel manipulator.

In addition to the balance performance, other important aspects such as the in-
fluence of the balance elements on the actuator torques and on the bearing forces
are investigated. Also the sensitivity of the balance parameters and the influence of
payload are evaluated.

First the evaluation approach is presented followed by the detailed design of
the balanced DUAL-V manipulator. For this manipulator the exact inverse dynamic
model is derived and validated and used for precise simulations without the need
of a controller. The experimental setup and the experiments are described and the
experimental results are presented and discussed.

8.2 Approach to the evaluation and comparison of a balanced
manipulator

This section presents and discusses the approach to the evaluation and comparison
of high-speed balanced parallel manipulators which are applied for investigation of
the planar 4-RRR parallel manipulator.

To verify if theoretical results are correct, the first step of the evaluation of the
balanced manipulator is to measure the balance performance. The shaking forces
and shaking moments can be obtained from a multi-body simulation with an accu-
rate model of the prototype manipulator or from measurements in an experimental
setup. From the fabrication process of the prototype manipulator and from the ob-
tained balance precision, the costs of the balance solution in terms of structural
design and production effort can be derived together with the sensitivity to balance
inaccuracies. For the potential of the manipulator it is important to also investigate
and measure the required driving power (actuator torques) and the bearing forces,
which determine the structural demand on the design, e.g. the size of the actuators
and the stiffness of the system.
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For both the evaluation and the comparative investigation, it is important to ex-
clude the influence of the controller and the control design. Although a controller
is required to move the manipulator and in practice it will never move the manipu-
lator exactly as desired, the shaking forces and shaking moments do not depend on
the controller directly. They depend solely on the actual motion of the manipulator.
This means that even with a bad controller the balance performance can be evalu-
ated well when the real motion of the manipulator is considered and measured and
also is used as input in the simulations.

To validate the measured results, the measured manipulator motion can be simu-
lated precisely with a multi-body dynamic model when the exact inverse dynamics
are known. Then the design of a controller for the simulation is omitted since open-
loop control can be applied, calculating the required actuator torques at each time
step.

Also the bearing forces do not depend on the controller directly but they depend
on the real motion of the manipulator. In practice it is challenging to measure the
bearing forces in an experimental setup but they can be estimated from a precise
simulation of the measured manipulator motion.

8.3 Design of the DUAL-V manipulator

The prototype of the DUAL-V manipulator in Fig. 7.4 was designed and fabricated
with the parameters in Table 8.1. These parameters and the kinematic variables of
the manipulator are illustrated in Fig. 8.1a and Fig. 8.2, of which the latter shows
the top-view of the computer-aided design (CAD) of the prototype manipulator. All
arm links i1 and i2 have equal lengths li1 and li2, respectively, the fixed pivots are
located at distances a = li1

√
2 and b with respect to the center, and the platform link

5 has a length l5 = 2b. With these parameters the pairs of arms are parallelograms
for motion along the orthogonal axes with non-rotated platform. The theoretical

b)a)
workspace

b
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b
aa
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z

q21

q11

q41

q31

q5

q22q12

q32

q42

y5

x5

Fig. 8.1 a) Definition of the kinematic variables and the parameters of the base; b) Workspace of
the DUAL-V manipulator.
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workspace of the manipulator for the given dimensions is shown in Fig. 8.1b and
consists of the intersection of two circles with radii li1 + li2 = 0.56 m of which the
maximal width along x is 2(li1+ li2−a) = 0.328 m and the maximal width along y is
2
√
(li1 + li2)2 −a2 = 2a = 0.792 m. Due to collisions, the motion of the prototype

along x is limited to a workspace width of 0.288 m.
The links of the manipulator are made of aluminium and were designed and pro-

duced before the counter-masses. Together with all bolts, nuts, bearings, etc., they
were measured with a 0.01 mm accurate digital caliper and weighted with a 0.01 g
accurate balance. Together with the CAD model in SolidWorks the parameters of
the link CoMs pi1 and pi2, the masses of the links mi1, mi2, and m5, and their inertia
about their CoM Ii1, Ii2, and I5 were determined.

Subsequently the counter-masses were designed of circular segments made of
brass. Their required mass mcm,i and CoM location at distance pcm,i relative to Ai
were calculated with the force balance conditions which can be derived from (2.51)
as

m11 p11 +m12l11(1− p12
l12

)+m42 p42 +m32l42
p32
l32

+m5
l42
2 = mcm,1 pcm,1

m21 p21 +m22l21 +m12l21
p12
l12

+ m5
2 l21 = mcm,2 pcm,2

m31 p31 +m32l31(1− p32
l32

)+m22 p22 +m12l22
p12
l12

+m5
l22
2 = mcm,3 pcm,3

m41 p41 +m42l41 +m32l41
p32
l32

+ m5
2 l41 = mcm,4 pcm,4

(8.1)

and from (3.2) as

A3
A4

A1
A2

B3B4

B1 B2

C3=C4
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x z
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p42
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41 42
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Fig. 8.2 Computer-aided design of the DUAL-V manipulator prototype with parameter definitions.
(patented [103])
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m11 p11 +m12l11 +m42 p42 +m5
l11
2 = mcm,1 pcm,1

m21 p21 +m22l21 +m32 p32 +m5
l21
2 = mcm,2 pcm,2

m31 p31 +m32l31 +m22 p22 +m5
l31
2 = mcm,3 pcm,3

m41 p41 +m42l41 +m12 p12 +m5
l41
2 = mcm,4 pcm,4

(8.2)

which both give equal results.
The main aim of the design of the counter-masses was to have the reduced inertia

Icm,i +mcm,i p2
cm,i of each counter-mass relative to Ai be as low as possible since

this is advantageous for low actuator torques [93]. Therefore a high mass of each
counter-mass with its CoM as close to Ai as possible is needed. A counter-mass
material with high density such as brass and a design which can be large in the out-
of-plane direction (thick counter-masses) therefore are advantageous. The design of
the counter-masses was verified with the mass properties function in SolidWorks,
with which it was also verified that the common CoM of the complete manipulator
is at the same location for any position in the workspace with non-rotated platform.

Each counter-mass was designed such that part of its mass mtun,i = 0.188 kg is a
separate element made of lead, placed at a distance ptun,i = 0.080 m from Ai on top
of the brass segments. This was done to fine-tune the counter-masses, compensating
for production inaccuracies and to be able to remove a small mass for experiments
investigating the balance performance with non-perfect counter-masses. The mass
and inertia of these tuning masses are included in the parameters mcm,i and Icm,i in
Table 8.1.

8.4 Inverse dynamic model and validation with simulation model

In this section the inverse dynamic model of the DUAL-V is derived and validated
with a multi-body simulation.

8.4.1 Inverse dynamic model to derive the actuator torques

The motion of the platform of the DUAL-V can be prescribed with
u = [x5(t),y5(t),θ5(t)]T with the position of the center of the platform (x5,y5) and

Table 8.1 DUAL-V parameters

[m] [kg] [kgm2] [m]
li1 = 0.2800 mi1 = 1.169 Ii1 = 0.012967 pi1 = 0.0737
li2 = 0.2800 mi2 = 0.606 Ii2 = 0.006417 pi2 = 0.1279
l5 = 0.2200 m5 = 0.899 I5 = 0.008168 pcm,i = 0.0575
a = 0.3960 mcm,i = 7.983 Icm,i = 0.026845 ptun,i = 0.080
b = 0.1100 mtun,i = 0.188 Iact,i = 0.004100



202 8 Experimental evaluation of a dynamically balanced 4-RRR manipulator

the orientation of the platform θ5 relative to the xy-reference frame at a time t, as
illustrated in Fig. 8.1a. The actuator torques τ required at a time t for a prescribed
motion u can be calculated as a combination of three individual parts as

τ = τ I + τ II + τ III (8.3)

Here τ I is the required actuator torque to move the platform and part of the mass
of links i2, τ II is the required actuator torque to move links i1 and part of the mass
of links i2, and τ III is the required actuator torque of part of the rotational motion
of links i2. This approach follows from Ref. [35] and is extended to being exact
by not simplifying the dynamics of the links i2. Similar to Ref. [35], the mass of
links i2 is distributed equivalently to joints Bi and Ci and is included in both τ I and
τ II . However the rotational inertia of links i2 then is not completely considered. τ III
therefore is the torque required to include the rotational inertia of links i2 exactly,
as will become clear later on.

8.4.1.1 Actuator torques τ I for the motion of the platform

The actuator torques τ I for the motion of the platform can be calculated from the
equations of the power of the actuator torques τ I that has to be equal to the power
of the motion of the platform, which is written as

q̇T τ I = u̇T F p (8.4)

where q̇ = [θ̇11, θ̇21, θ̇31, θ̇41]
T is the vector of the angular velocities of the driven

links i1, u̇ = [ẋ5, ẏ5, θ̇5]
T is the vector of the velocities of the platform motion, and

F p is the vector of the resultant forces and the resultant moment that act on the
platform. For a prescribed motion of the platform, q̇ can be derived from the velocity
vectors of joints Bi and Ci along the line BiCi which, for a rigid link, are equal. These
vectors are shown in Fig. 8.3a and are written and calculated as

vB
n,i = vC

n,i → Xnq̇ = Y nu̇ (8.5)

with
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Fig. 8.3 a) Velocity vectors of joints Bi and Ci of links i2; b) Equivalent mass model of links i2; c)
Forces Fi in joints Bi and Ci for rotational acceleration of links i2.
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Xn =


−l11s(θ11 −θ12) 0 0 0
0 − l21s(θ21 −θ22) 0 0
0 0 − l31s(θ31 −θ32) 0
0 0 0 − l41s(θ41 −θ42)

 (8.6)

Y n =


c(θ12) s(θ12) −c(θ12 −θ5)b
c(θ22) s(θ22) −c(θ22 −θ5)b
c(θ32) s(θ32) c(θ32 −θ5)b
c(θ42) s(θ42) c(θ42 −θ5)b

 (8.7)

Here s() and c() are used as shorthand notation for sin() and cos(), respectively, and
b is the parameter in Table 8.1. From (8.5) q̇ then is derived as

q̇ = X−1
n Y nu̇ = Ju̇

(8.8)

in which J is the jacobian matrix

J =


−c(θ12)

l11s(θ11−θ12)
−s(θ12)

l11s(θ11−θ12)
c(θ12−θ5)

l11s(θ11−θ12)
b

−c(θ22)
l21s(θ21−θ22)

−s(θ22)
l21s(θ21−θ22)

c(θ22−θ5)
l21s(θ21−θ22)

b
−c(θ32)

l31s(θ31−θ32)
−s(θ32)

l31s(θ31−θ32)
−c(θ32−θ5)

l31s(θ31−θ32)
b

−c(θ42)
l41s(θ41−θ42)

−s(θ42)
l41s(θ41−θ42)

−c(θ42−θ5)
l41s(θ41−θ42)

b

 (8.9)

The resultant forces and the resultant moment on the platform can be calculated as
F p = MI ü, where ü = [ẍ5, ÿ5, θ̈5]

T are the accelerations of the platform motion and
MI is the mass matrix

MI =

m5 +∑4
i=1 meq,i2 0 0
0 m5 +∑4

i=1 meq,i2 0
0 0 I5 +(∑4

i=1 meq,i2)b2

 (8.10)

with the equivalent masses meq,i2 = mi2 pi2/li2 of links i2 that are modeled in joints
Ci as illustrated in Fig. 8.3b. From (8.4) τ I then is obtained as

(Ju̇)T τ I = u̇T MI ü ⇒ τ I = JT∗MI ü (8.11)

with the pseudo-inverse jacobian J∗.

8.4.1.2 Actuator torques τ II for the motion of links i1

The actuator torques τ II for the motion of links i1 can be calculated with

τ II = MII q̈ (8.12)
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with q̈ = [θ̈11, θ̈21, θ̈31, θ̈41]
T the vector of the angular accelerations of the driven

links i1 and with mass matrix MII written as

MII =


I11 +m11 p2

11 + Icm,1 +mcm,1 p2
cm,1 + Iact,1 +meq,11l2

11 0 0 0
0 I21 +m21 p2

21 + Icm,2 +mcm,2 p2
cm,2 + Iact,2 +meq,21l2

21 0 0
0 0 I31 +m31 p2

31 + Icm,3 +mcm,3 p2
cm,3 + Iact,3 +meq,31l2

31 0
0 0 0 I41 +m41 p2

41 + Icm,4 +mcm,4 p2
cm,4 + Iact,4 +meq,41l2

41

(8.13)

which includes the inertias Ii1 +mi1 p2
i1 of links i1 about joints Ai, the inertias Icm,i +

mcm,i p2
cm,i of counter-masses i about joints Ai, the inertias Iact,i of actuators i, and

the inertias of the equivalent masses meq,i1 = mi2(1− pi2/li2) of links i2 that are
modeled in joints Bi as shown in Fig. 8.3b. From (8.5) q̈ can be derived as

d
dt
(Xnq̇) =

d
dt
(Y nu̇)

dXn

dt
q̇+Xnq̈ =

dY n

dt
u̇+Y nü

q̈ = (Xn)
−1(

dY n

dt
u̇+Y nü− dXn

dt
q̇) (8.14)

with

dXn

dt
=


−l11c(θ11 −θ12)(θ̇11 − θ̇12) 0 0 0
0 − l21c(θ21 −θ22)(θ̇21 − θ̇22) 0 0
0 0 − l31c(θ31 −θ32)(θ̇31 − θ̇32) 0
0 0 0 − l41c(θ41 −θ42)(θ̇41 − θ̇42)

 (8.15)

dY n

dt
=


−s(θ12)θ̇12 c(θ12)θ̇12 s(θ12 −θ5)(θ̇12 − θ̇5)b
−s(θ22)θ̇22 c(θ22)θ̇22 s(θ22 −θ5)(θ̇22 − θ̇5)b
−s(θ32)θ̇32 c(θ32)θ̇32 −s(θ32 −θ5)(θ̇32 − θ̇5)b
−s(θ42)θ̇42 c(θ42)θ̇42 −s(θ42 −θ5)(θ̇42 − θ̇5)b

 (8.16)

The angular velocities q̇2 = [θ̇12, θ̇22, θ̇32, θ̇42]
T of links i2 can be obtained from

li2θ̇i2 =−vB
t,i +vC

t,i with the velocity vectors vB
t,i and vC

t,i of joints Bi and Ci normal to
line BiCi, respectively, as illustrated in Fig. 8.3a. In matrix notation this is written as

l2q̇2 = −X t q̇+Y t u̇ ⇒ q̇2 = (l2)
−1(−X t q̇+Y t u̇) (8.17)

with

l2 =


l12 0 0 0
0 l22 0 0
0 0 l32 0
0 0 0 l42

X t =


l11c(θ11 −θ12) 0 0 0
0 l21c(θ21 −θ22) 0 0
0 0 l31c(θ31 −θ32) 0
0 0 0 l41c(θ41 −θ42)

 (8.18)

and
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Y t =


−s(θ12) c(θ12) s(θ12 −θ5)b
−s(θ22) c(θ22) s(θ22 −θ5)b
−s(θ32) c(θ32) −s(θ32 −θ5)b
−s(θ42) c(θ42) −s(θ42 −θ5)b

 (8.19)

The actuator torques τ II then are written as

τ II = MII(Xn)
−1(

dY n

dt
u̇+Y nü− dXn

dt
q̇) (8.20)

8.4.1.3 Actuator torques τ III for the rotational motion of links i2

The actuator torques for motion of the mass of links i2 is included in τ I and τ II
with the equivalent masses in Fig. 8.3b. Then also a specific inertia of links i2 is
included, which is the inertia of the equivalent model about its CoM calculated as
meq,i1 p2

i2 +meq,i2(li2 − pi2)
2. In general the real inertia of links i2 will not be equal

to this value. This means that actuator torques τ III are required for the difference in
the real inertia and the modeled inertia of links i2, which can be written in the mass
matrix MIII as

MIII =


I12 −meq,11 p2

12 −meq,12(l12 − p12)
2 0 0 0

0 I22 −meq,21 p2
22 −meq,22(l22 − p22)

2 0 0
0 0 I32 −meq,31 p2

32 −meq,32(l32 − p32)
2 0

0 0 0 I42 −meq,41 p2
42 −meq,42(l42 − p42)

2

 (8.21)

The torques Γ = [Γ1,Γ2,Γ3,Γ4]
T that act on links i2 for rotational motion of this

difference can be written as

Γ = MIII q̈2 (8.22)

with angular accelerations q̈2 = [θ̈12, θ̈22, θ̈32, θ̈42]
T of links i2 which can be derived

from (8.17) as

d
dt
(l2q̇2) =

d
dt
(−X t q̇+Y t u̇)⇒ q̈2 = (l2)

−1(−dX t

dt
q̇−X t q̈+

dY t

dt
u̇+Y t ü)

(8.23)

with

dX t

dt
=


−l11s(θ11 −θ12)(θ̇11 − θ̇12) 0 0 0
0 − l21s(θ21 −θ22)(θ̇21 − θ̇22) 0 0
0 0 − l31s(θ31 −θ32)(θ̇31 − θ̇32) 0
0 0 0 − l41s(θ41 −θ42)(θ̇41 − θ̇42)

 (8.24)

and
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dY t

dt
=


−c(θ12)(θ̇12) −s(θ12)(θ̇12) c(θ12 −θ5)(θ̇12 − θ̇5)b
−c(θ22)(θ̇22) −s(θ22)(θ̇22) c(θ22 −θ5)(θ̇22 − θ̇5)b
−c(θ32)(θ̇32) −s(θ32)(θ̇32) −c(θ32 −θ5)(θ̇32 − θ̇5)b
−c(θ42)(θ̇42) −s(θ42)(θ̇42) −c(θ42 −θ5)(θ̇42 − θ̇5)b

 (8.25)

The torque Γi on each link li2 can be modeled with forces Fi in both Bi and Ci normal
to line BiCi as illustrated in Fig. 8.3c. These forces are calculated with

F III = (l2)
−1Γ (8.26)

with F III = [F1,F2,F3,F4]
T . These forces determine the required actuator torques

τ III and can be calculated in two parts. The forces Fi in Bi cause a direct torque onto
the actuators which is written as

τa
III = −X tF III (8.27)

The forces Fi in Ci act on the platform and therefore they can be distributed among
the actuators with JT∗ in a similar way as τ I was calculated, which results in

τb
III = JT∗Y T

t F III (8.28)

Altogether, the actuator torques τ III are calculated with

τ III = τa
III + τb

III = (−X t + JT∗Y T
t )F III (8.29)

8.4.2 Simulation and validation of the inverse dynamic model

The DUAL-V manipulator was modeled with the multi-body simulation software
package Spacar1 and the simulation model is shown in Fig. 8.4. Since all mass and
inertia data were modeled in the nodes, the shapes of the elements have no meaning.

Figure 8.5 shows the simulated motion for validation of the inverse dynamic
model and the validation results. At each time step the actuator torques were calcu-
lated for a given platform motion and the dynamics were solved with solver ODE45
(Dormand-Prince), with maximal step size of 0.0001 s, and with a relative tolerance
of 1e-12 m. The results show the accuracy of the output platform motion with respect
to the input platform motion, which is in the order of the relative tolerance of the
solver. The platform motion consisted of accelerations up to 118 m/s2 in x-direction,
up to 202 m/s2 in y-direction and up to 1612 rad/s2rotationally.

1 http://www.spacar.nl/
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8.5 Experimental setup

The experimental setup of the prototype manipulator is shown in Fig.8.6a. The
manipulator of aluminium links and brass counter-masses was mounted on four
ETEL RTMB0140-100 direct drive actuators, which could deliver maximal torques
of 127 Nm. The actuators were mounted on an aluminum base plate of 1.0×0.8 m
with a thickness of 25 mm. The unbalanced manipulator for comparison was the
same manipulator but without the counter-masses and for evaluation of the sensitiv-
ity of the counter-masses on the shaking forces and the shaking moment, the tuning
masses of lead were removed from the brass elements.

To measure the shaking forces and the shaking moment of the manipulator in the
horizontal plane, an ATI mini 45 six-axes force/torque sensor was positioned and
centered between the base plate and the fixed frame as shown in Fig. 8.6b. This
sensor could measure a maximum of 500 N shaking force in both x- and y- direction
and 20 Nm shaking moment with a measurement noise that was estimated to be
about 3 N and 0.02 Nm. To unload the sensor from the gravity force, to align it
horizontally, and to prevent damage during assembly, the base plate was suspended
by four cables to float just above the sensor. Four pins fixed the sensor with respect
to the base plate for in-plane motion while translation in vertical direction was not
restricted.

The control of the manipulator was based on a PID-controller at a frequency
of 10 kHz. The actuator torques and the actuator orientations were recorded with
the same frequency, while the measurement frequency of the force/torque sensor
was 1 kHz. With the information of the actuator encoders and the direct kinematic
model, the real manipulator motion was determined.

Since at high speeds the PID-controller allowed significant trajectory devia-
tions, to avoid damaging the prototype, the experiments were limited to motion

Fig. 8.4 Spacar model of the balanced DUAL-V manipulator with mass and inertia modeled in the
nodes.
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within a centered circular workspace with a diameter of 0.2 m. From Fig. 8.7,
which shows the condition number cond(Jh) of the harmonized jacobian matrix
Jh = J[1,0,0;0,1,0;0,0,1/b] for three platform orientations, it can be observed that
within this area the force transmission to the platform is optimal.

8.6 Experiments and experimental results

In this section the experiments are described and the results are presented. First
various results of the shaking forces and the shaking moment are shown, followed by
the results of the actuation torques and the results of the bearing forces. Discussion
of the results is in section 8.7.

For motion of the center of the platform along the orthogonal axes and without
platform rotation, the unbalanced manipulator is expected to exhibit shaking forces
and a zero shaking moment, of which the latter is because of the symmetric design.
The balanced manipulator is expected to have zero shaking forces and a zero shaking
moment.

Columns 3 and 5 in Fig. 8.8 show the measured shaking forces and shaking mo-
ment of the unbalanced and the balanced manipulator, respectively, for the motion
shown in column 12. This motion has a maximal acceleration of 51 m/s2 in both
directions and 43 rad/s2 rotationally, which therefore is not perfect balanced mo-
tion along the orthogonal axes. For validation, the shaking forces and the shaking
moment of the unbalanced and the balanced manipulator from simulation of the
measured motion are shown in column 2 and 4, respectively.
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Fig. 8.5 Validation of the inverse dynamic model for a motion throughout the workspace of the
balanced manipulator. The error between the input platform motion and the output platform motion
is in the order of the relative tolerance of the solver.

2 See video at: http://www.ijrr.org/ijrr 2013/484183.htm

http://www.ijrr.org/ijrr_2013/484183.htm


8.6 Experiments and experimental results 209

For motion with a non-rotated platform the unbalanced manipulator can be con-
sidered as a reduced mass mred moving with the platform with which the expected
shaking forces can be calculated. This reduced mass can be derived from the force
balance conditions in (8.1) or (8.2). For the unbalanced manipulator the product
mcm,i pcm,i is zero, which can also be interpreted as that factor m5li1/2 is increased
with mcm,i pcm,i. Then the reduced mass representing the unbalanced manipulator
can be obtained from mred li1/2 = mcm,i pcm,i as mred = 2mcm,i pcm,i/li1 = 3.279 kg.
The shaking forces of the unbalanced manipulator in Fig. 8.8 then are expected to
be 51 ·3.279 = 167 N.

A typical motion for pick-and-place tasks including referencing is motion along
a triangular trajectory. Column 1 in Fig. 8.9 shows the measured motion of the
manipulator when moved along a triangular trajectory with equal sides of 0.173 m
and with maximal accelerations of 66 m/s2 along x, 63 m/s2 along y, and 129 rad/s2

rotationally. For the unbalanced and the balanced manipulator, the shaking forces
and the shaking moment from simulation of the measured motion are shown in
columns 2 and 4, respectively, and the measured results are shown in columns 3 and
5, respectively. When the platform rotation is zero, the unbalanced manipulator is
expected to have shaking forces of 66 ·3.279= 216 N along x and 63 ·3.279= 207 N
along y and the balanced manipulator is expected to exhibit only a shaking moment,
while shaking forces are zero.

a)

b)

Fig. 8.6 a) Experimental setup of the balanced DUAL-V manipulator prototype suspended by
cables and mounted on a six-axes force/torque sensor for measurement of the in-plane shaking
forces and shaking moment; b) close-up of sensor mount.
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To evaluate the sensitivity of the balance masses, the tuning-masses were re-
moved from each counter-mass for which each product mcm,i pcm,i is 96.72% of the
value for perfect balance, or has a 3.28% balance inaccuracy. Fig. 8.10 shows the
experimental results of this 96.72% balanced manipulator and of the fully balanced
manipulator for the motion in column 1 which has maximal accelerations of 186
m/s2 along x, 3 m/s2 along y, and 50 rad/s2 rotationally.

The results in Fig. 8.10 also represent the influence of payload on the plat-
form. An equal 3.28% balance inaccuracy is also obtained by placing 0.107 kg
in the center of the platform, instead of leaving the tuning masses out. This is
calculated similarly as for the reduced mass of the unbalanced manipulator as
2mtun,i ptun,i/li1 = 2 · 0.188 · 0.080/0.280 = 0.107 kg. By moving this mass with
186 m/s2 along x, a shaking force of 186 ·0.107 = 20 N is expected.

For comparison, Fig. 8.11 shows the theoretical simulation results of the inverse
dynamic model for the smooth motion along the triangular trajectory of column 1
with maximal accelerations of 82.6 m/s2 and 71.6 m/s2 in the x- and y-directions,
respectively. The shaking forces and the shaking moment of the unbalanced manipu-
lator, of the 96.72% balanced manipulator, and of the fully balanced manipulator are
shown in columns 2, 3, and 4, respectively. Here the shaking forces of the unbal-
anced manipulator are expected to be 82.6 ·3.279 = 271 N and 71.6 ·3.279 = 235 N
in the x- and y-directions, respectively, while for the 96.72% balanced manipulator
they are expected to be 82.6 ·0.107 = 8.9 N and 71.6 ·0.107 = 7.7 N in the x- and
y-directions, respectively.
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Fig. 8.7 The condition number throughout the workspace for three platform orientations shows
that the optimal dynamic performance is found in the center and along the y-axis.
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Since the balance masses add inertia to the manipulator, the balanced manipu-
lator is expected to require higher actuator torques. For the motion in Fig. 8.9, the
measured actuator torques of the unbalanced manipulator and the balanced manipu-
lator are shown in columns 1 and 2 in Fig. 8.12, respectively. Column 3 shows the
actuator torques of both manipulators calculated from the inverse dynamic model
for equal input motion. The smaller curves represent the unbalanced manipulator.

The improved mass distribution due to the counter-masses is expected to have
an advantageous influence on the bearing forces of the balanced manipulator. For
simulations of the measured motion in Fig. 8.9, columns 1 and 2 in Fig. 8.13 show
the bearing forces of the unbalanced and the balanced manipulator, respectively.
For validation, columns 3 and 4 show the bearing forces from the simulations for
smooth motion along the triangular trajectory with equal maximal accelerations.
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Fig. 8.8 Results from simulation and experiments of the unbalanced and the balanced manipulator
for the measured motion in column one, which is motion along the orthogonal axes with maximal
accelerations of 51 m/s2 and 43 rad/s2 rotationally. It shows that the measured shaking forces of the
balanced manipulator are 97% and 98% lower in x- and y-direction, respectively, and the measured
shaking moment is 96% lower as compared to the unbalanced manipulator.
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8.7 Discussion

In this section the experimental results are discussed. First the shaking forces and
the shaking moment are considered and subsequently the sensitivity to unbalance,
the actuator torques, and the bearing forces are treated. Also the evaluation method
and the experimental setup are discussed.

8.7.1 Shaking forces and shaking moments

The measurements in Fig. 8.8 show a significant reduction of the shaking forces of
the balanced manipulator. While for the unbalanced manipulator the maximal mea-
sured shaking forces are 302 N along x and 263 N along y, the balanced manipulator
has maximal shaking forces of 8.4 N along x and 6.4 N along y, being close to the
noise level of the sensor. This means a reduction of 97% and 98% of shaking forces
along x and y, respectively. The shaking forces of the balanced manipulator are non-
zero mainly due to the rotational motion of the platform.
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Fig. 8.9 For the measured motion with maximal accelerations of 66 m/s2 along x, 63 m/s2 along
y, and 129 rad/s2 rotationally along a triangular trajectory with equal sides of 0.173 m in column
1, columns 2 and 4 show the simulation results and columns 3 and 5 show the experimental re-
sults for the unbalanced and the balanced manipulator, respectively. For the balanced manipulator
the measured shaking forces are 93% and 94% lower in x- and y-direction, respectively, and the
measured shaking moment is 16% lower as compared to the unbalanced manipulator.
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From simulation of the measured motion, the maximal shaking forces of the un-
balanced manipulator are about 142 N along x and 138 N along y (column 3) while
for the balanced manipulator they are about 3.7 N along x and 2.8N along y (column
4). Also for these values the reduction of shaking forces is 97% and 98% along x and
y, respectively, however the values differ significantly from the measured maximal
values. Also both values of the unbalanced manipulator differ from the expected
167 N shaking forces. Most likely this is caused by the calculations of the derivative
(velocity) and the second derivative (acceleration) of the measured motion, which
are needed for the inverse dynamic model. Since the derivatives of the measured
position information result in unrealistically high values, the values were filtered
with a first order low pass filter. However the simulation results show that this is
not sufficient. In addition, the mentioned maximal accelerations were obtained from
these derivatives, which explains why the expected shaking forces are closer to the
results of the simulation of the measured motion.

The measured shaking moment of the unbalanced manipulator has a maximal
value of 4.3 Nm, while for the balanced manipulator it is at most 0.19 Nm, which
is 96% lower. It is likely that the measurements of the unbalanced manipulator are
affected significantly by frame vibrations. In the experimental setup the relatively
large inertia of the manipulator with the base plate in combination with the stiffness
of the force/torque sensor caused the base plate to rotate in the lowest eigenmode
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Fig. 8.10 Experimental results of the 96.72% balanced manipulator and of the fully balanced ma-
nipulator for the motion in column 1 with maximal accelerations of 186 m/s2 along x, 3 m/s2 along
y, and 50 rad/s2 rotationally. The maximal shaking forces of the 96.72% balanced manipulator are
increased with 73% along x and 23% along y, while maximal shaking moment is reduced with
13%.
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with measured eigenfrequency of about 3.4 Hz. This may have caused interference
of the relatively high shaking forces with the measured shaking moment.

The simulation results of the shaking moment (columns 2 and 4) are dramatically
affected by the mentioned differentiation problem. Although the values of the un-
balanced manipulator could be realistic, the values of the balanced manipulator are,
with a maximal value of 10 Nm, significantly higher as compared to the measured
values. The shaking moment is obtained from the simulation as the sum of the actua-
tor torques together with the moments created by the individual reaction forces in Ai
with respect to the center. Due to the differentiation problem, all individual reaction
forces are affected for which the resulting shaking moments become useless.

For motion along the triangular trajectory, Fig. 8.9 shows that the measured shak-
ing forces of the balanced manipulator have maximal values of 22 N along x and 16
N along y, which are non-zero because of rotational motion of the platform. Com-
pared with the unbalanced manipulator showing maximal measured shaking forces
of 300N along x and 262 N along y, the balanced manipulator has 93% and 94% re-
duced shaking forces, respectively. The maximal measured shaking moment of the
unbalanced manipulator is 6.5 Nm while of the balanced manipulator it is 5.2 Nm,
which is 16% lower.
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Fig. 8.11 Theoretical simulation results of the inverse dynamic model of the unbalanced, the
96.72% balanced, and the fully balanced manipulator for the motion in column 1 with maxi-
mal accelerations of 82.6 m/s2 and 71.6 m/s2 in x- and y-directions, respectively. 96.72% balance
represents 0.107 kg of unbalanced mass on the platform for which the shaking forces increase
considerably. The shaking moment of the balanced manipulator is 12% lower as compared to the
unbalanced manipulator.
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From the simulations in columns 2 and 4, the unbalanced manipulator has max-
imal shaking forces of 200 N along x and 175 N along y, while for the balanced
manipulator the maximal shaking forces are 12 N along x and 8.8 N along y. This
results in 94% and 95% reduced shaking forces along x and y, respectively, for
which they differ 1% from the results from the measurements. Regarding the simu-
lated results, the same remarks apply as for Fig. 8.8, for which the simulated shaking
moments cannot be interpreted.

From the theoretical simulation of motion along the triangular trajectory in
Fig. 8.11, the unbalanced manipulator has maximal shaking forces of 271 N along x
and 235 N along y, as expected, while the balanced manipulator has minimal shak-
ing forces. The maximal shaking moment of the unbalanced manipulator is 16.1 Nm
while the maximal shaking moment of the balanced manipulator is 14.1 Nm which
is 12% lower. This is less than the measured difference in maximal shaking moment
of 16% in Fig. 8.9.
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Fig. 8.12 For the motion in Fig. 8.9 the measured actuator torques of the unbalanced and the
balanced manipulator are shown in columns 1 and 2, respectively. Column 3 shows the actuator
torques of both manipulators from the inverse dynamic model for equal input motion. The smaller
curves represent the unbalanced manipulator. From experiments, the actuator torques of the bal-
anced manipulator are about 1.6× higher while theoretically they are about 1.4× higher than the
actuator torques of the unbalanced manipulator.
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8.7.2 Sensitivity to balance inaccuracy and payload

The sensitivity of the dynamic balance was investigated for a balance inaccuracy of
3.28%, representing the effect of inaccurate counter-masses that are 0.188 kg too
lightweight or of a payload of 0.107 kg on the platform. The results in Fig. 8.10
show that for 3.28% balance inaccuracy, the shaking forces increase from maximal
values of 33 N along x and 30 N along y (column 3) to maximal values of 57 N along
x and 37 N along y (column 2). This means an increase of shaking forces of 73%
along x and 23% along y. The difference in shaking force along x is 57−33 = 24 N
and close to the expected 20 N shaking force for the 3.28% balance inaccuracy. The
maximal shaking moment shows to be reduced from 0.64 Nm (column 3) to 0.56
Nm (column 2) which is a reduction of 13%.

The theoretical simulation of motion along the triangular trajectory in Fig. 8.11
shows that the 96.72% balanced manipulator has maximal shaking forces of 8.9 N
along x and 7.7 N along y, as expected from the calculations from the force bal-
ance conditions. This means that the expected shaking forces of the manipulator for
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Fig. 8.13 For the motion in Fig. 8.9, the bearing forces from simulation of the measured motion of
the unbalanced and the balanced manipulator are shown in columns 1 and 2, respectively. Columns
3 and 4 show the results from simulation of smooth motion along the triangular trajectory with
equal maximal accelerations. It was found that the maximal bearing forces of the balanced ma-
nipulator were 73% lower in joints A1 and A2 and were 69% lower in joints A3 and A4 as compared
to the unbalanced manipulator.
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motion without rotation of the platform can be described as[
ShFx
ShFy

]
=

2(mcm,i pcm,i)
di f

li1

[
ẍ5
ÿ5

]
= mpayload

[
ẍ5
ÿ5

]
(8.30)

showing a linear relation between the shaking forces ShFx and ShFy and the bal-
ance inaccuracy or difference from perfect balance (mcm,i pcm,i)

di f and the payload
mpayload on the platform. The maximal shaking moment of the 96.72% balanced
manipulator in Fig. 8.11 is 14.2 Nm, which is, contrary to the measured results,
about 1% higher than of the fully balanced manipulator.

Due to the PID-controller that allowed the manipulator to move not perfectly
along the desired trajectories, from the results in Figs. 8.8, 8.9, and 8.10 the sensi-
tivity to motion inaccuracy is also shown. For imperfect motion along the orthog-
onal axes, Fig. 8.8 shows that shaking moments exist, however they remain small
as compared to the motion in Fig. 8.9. The sensitivity to rotation of the platform is
shown too. Small rotations of the platform can already contribute significantly to
the shaking forces since the measured shaking forces of the balanced manipulator
in Figs. 8.8, 8.9, and 8.10 are not zero as expected.

Altogether it can be concluded that small inaccuracies of the counter-masses, of
unbalanced payload on the platform, and of platform rotations can already lead to
considerable vibration for high-speed manipulations although they remain signif-
icantly low as compared to the unbalanced manipulator. Therefore high accuracy
in the design, production, and control of a balanced manipulator is important for
optimal dynamic balance.

8.7.3 Actuator torques

The measured actuator torques in Fig. 8.12 show that the torques required to move
the balanced manipulator are higher than the torques of the unbalanced manipulator.
The maximal values of the torques τ1, τ2, τ3, and τ4 of the unbalanced manipulator
are 31 Nm, 35 Nm, 30 Nm, and 29 Nm, respectively, and of the balanced manipu-
lator they are 52 Nm, 53 Nm, 47 Nm, and 44 Nm, respectively. This means that for
the balanced manipulator they are 1.68, 1.51, 1.57, and 1.52 times the torques of the
unbalanced manipulator, respectively, which is on average 1.6× higher.

From the theoretical results in column 3 in Fig. 8.12, the maximal torques τ1 and
τ2 are both 1.42 times higher being 27 Nm and maximal torques τ3 and τ4 are both
1.47 times higher being 22 Nm, which is on average 1.4× higher for the balanced
manipulator. The actuator torques from the theoretical results are lower than the
measured torques which may be caused by the high torques that the PID-controller
calculates to correct the output motion and by friction which was not included in the
calculations with the inverse dynamic model.
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8.7.4 Bearing forces

The bearing forces shown in column 1 and 2 in Fig. 8.13 were derived from the
simulation of the real motion in Fig. 8.9. Since the values of the shaking forces from
these simulations have been considered to be inaccurate due to the differentiation
problem, the values of the individual bearing forces are also inaccurate. However
the results from the simulation in Figs. 8.8 and 8.9 have shown to be suitable for
comparing the unbalanced and the balanced manipulator.

For simulation of precise motion along the triangular trajectory with equal accel-
erations, columns 3 and 4 of Fig. 8.13 show the bearing forces of which the shapes
and size are comparable with columns 1 and 2. From both simulations it is found
that the maximal bearing forces in A1 and A2 are 73% lower and in A3 and A4 are
69% lower for the balanced manipulator. The maximal forces were calculated as
max(

√
F2

x +F2
y ) in each bearing. The lower bearing forces imply that the balanced

manipulator has increased stiffness characteristics.

8.7.5 Evaluation method and experimental setup

The approaches to the design of balanced manipulators have resulted in a new ma-
nipulator which has been shown to be both feasible for high-speed tasks and to have
low vibration of its base. The aim was to have a perfectly dynamically balanced
manipulator along the orthogonal axes. Since all motion of the manipulator remains
in the vicinity of perfect balance, the manipulator has proved to have significant
balance performance throughout the workspace.

The evaluation method of considering the measured motion of the manipulator
and using this motion as input for the simulations has shown to be partly successful.
Since only position data of the manipulator motion were recorded, these data had to
be differentiated twice to obtain the velocity data and the acceleration data at each
time step. Because of this, the obtained values for the shaking forces and shaking
moment were not equal to the measured values. However, the resulting shaking
forces from simulations were shown to be applicable for the relative comparison
of the balanced and the unbalanced manipulator. This was not true for the shaking
moments. Therefore, for a better application of this evaluation method, it is required
to have accurate velocity and acceleration data, for example by measuring as well
the position, the velocity, and the acceleration of the manipulator motion during
experiments with additional sensors.

For the measurements of the shaking forces the force/torque sensor mounted in
the center of the base plate was shown sufficient. However due to the low rotational
stiffness of the experimental setup, measurement of the shaking moment was shown
problematic. A solution to this is to measure the shaking forces with solely force
sensors at the corners of the base plate such that the base plate is fully constrained
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for in-plane translational and rotational motion. From the measured forces then the
shaking moment can be derived.

8.8 Conclusion

A prototype of a dynamically balanced redundant planar 4-RRR parallel manipu-
lator in an experimental setup was presented for evaluation and comparison with the
unbalanced manipulator. A method was proposed for a fair evaluation and compar-
ison in which the measured motion from the experiments was used as input for the
simulation. For precise simulation of the manipulator motion, the inverse dynamic
model of the manipulator was derived and validated.

The prototype manipulator successfully performed high-speed motion with low
base vibration. Experiments showed that the balanced manipulator has about 97%
lower shaking forces and a 96% lower shaking moment for motion along the orthog-
onal axes. For motion throughout the workspace, the balanced manipulator showed
about 93% lower shaking forces and 16% lower shaking moment. Since the PID-
controller allowed small rotational motion of the platform, causing shaking forces,
it is expected that these values will reduce further when the control of the rotation
of the platform is improved.

A relatively small balance inaccuracy of 3.28%, representing too light counter-
masses or an unbalanced payload on the platform, was shown to increase the shaking
forces considerably, while they still remain significantly low as compared to the un-
balanced manipulator. For a manipulator with optimal dynamic balance, accurate
design and production therefore are important. The actuator torques of the balanced
manipulator were shown to be about 1.6× higher than for the unbalanced manipu-
lator and the bearing forces of the balanced manipulator were shown to be about
71% lower than for the unbalanced manipulator.

It was found that shaking forces and shaking moments obtained from precise
simulation of the measured manipulator motion with the inverse dynamic model are
affected by the differentiation of the measured position data to obtain velocities
and accelerations. The obtained values were shown to be useful for the relative
comparison of the shaking forces of the balanced and the unbalanced manipulator,
but their values were not equal to the measured values.





Chapter 9
Reflection on the design of inherently balanced
mechanisms

For the synthesis of inherently dynamically balanced mechanisms two methods have
been proposed. In chapter 2 the method of linearly independent linear momentum
was introduced as an intuitive and straightforward method to derive planar inher-
ently force-balanced mechanisms from given kinematic architectures by adapting
the geometric and mass parameters. Closed kinematic chains were investigated by
substituting the derivatives of the loop equations in the linear momentum equations.
It was shown how the linear momentum equations of a mechanism with multiple
closed loops include not only the general force balance conditions, but also a vari-
ety of general and specific configurations of force-balanced mechanisms as subsets.

Since for this method an initial kinematic architecture is required, it can be ad-
vantageous in situations where the designer already has some ideas of the kinematic
solution that is desired. Advantageous force balance solutions then are obtained
which determine the exact geometry and kinematics of the mechanism. Although
force balance then is considered prior to the kinematic synthesis, the obtained solu-
tions depend significantly on the initial choice of the kinematic architecture.

Application of the method of linearly independent linear momentum to spatial
mechanisms is challenging because of the sin() and cos() products that appear which
prevents writing the linear momentum in linearly independent terms. This problem
also exists when the angular momentum of a kinematic architecture is written, for
which it is challenging to investigate the moment balance. A possibility for analysis
of the moment balance is to apply the method of principal vectors as it was pro-
posed by Fischer as solely a method for analysis, and subsequently to continue as
in chapter 6 by writing the angular momentum similarly as for the principal vec-
tor linkages from which the moment balance conditions can be derived. Then the
angular momentum equation depends only on principal elements.

In chapter 7 the method of principal vector linkages was presented where inher-
ently dynamically balanced mechanisms are derived from principal vector linkage
architectures. In other words, mechanism solutions are synthesized with dynamic
balance as a design principle. Because principal vector linkage architectures are
based on the essential kinematic conditions for dynamic balance solely, dynamic
balance is considered prior to the kinematic synthesis. This method gives liberty to
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the designer to find a multitude of new kinematic solutions of dynamically balanced
mechanisms.

In section 3.5 it was shown that principal vector linkages can also move spatially,
but that it is challenging to build them in real because of the joints that cannot con-
strain the element to move as spatial parallelograms. It was not investigated how the
angular momentum and the moment balance conditions of spatial principal vector
linkages can be derived. Since Fischer showed that the principal vector method is
applicable for analysis of spatial mechanisms, it is likely that principal vectors can
be used also for analysis of the dynamic balance of spatial kinematic architectures.
Then similar to the method of linearly independent linear momentum, inherently
dynamically balanced solutions may be synthesized by adapting the geometric and
mass parameters of a given spatial mechanism.

In chapter 7 it was shown that inherently balanced mechanism solutions for de-
sired tasks and functions can be synthesized from principal vector linkage architec-
tures by various methods. The obtained solutions are among the easiest to derive
from the principal vector linkage architectures by changing the parameters of the
elements, eliminating elements, and by combining them. Alternative designs of the
principal vector links such as in Fig. 3.18 and Fig. 3.20 and the exchange of links
with other mechanism elements such as sliders and gears have to be developed fur-
ther to achieve advanced solutions. It is also possible to find new principal vector
linkage architectures, for instance by developing the graphical solutions related to
the principal vector method in [53, 79, 104, 87] into mechanisms where each el-
ement has mass and inertia, similarly as shown in this work, or by application of
mass equivalent linkages of which the theory was not included [101].

To obtain inherent moment balance, the degrees-of-freedom of a principal vector
linkage architecture are reduced such that the moment balance conditions hold, for
instance by introducing slider elements as was shown for the grasper mechanism in
Fig. 7.1. It still is challenging to obtain moment balance conditions for non-linear
relations among the relative motions, for which a systematic approach is needed.
Since the parallelogram can be considered fundamental in the analysis and synthesis
of dynamic balance - principal vector linkages are based on parallelograms - the
parallelogram may be fundamental in such an approach too.

The kinematic solutions in chapter 7 are a glimpse of the potential of the method
of principal vector linkages. The kinematic solutions such as the grasper mechanism
in Fig. 7.1, the DUAL-V in Fig. 7.4, and the mechanisms in Fig. 7.6 and Fig. 7.8b are
new and would not have been found if dynamic balance would not have been consid-
ered prior to the kinematic synthesis. The complexity of the grasper mechanism in
Fig. 7.1 is not more than other grasper mechanisms with the same functionality and
with its actuators on the base. Since the mechanism does not need counter-masses
it is a low mass solution. The complexity of the DUAL-V manipulator in Fig. 7.4
is significantly less than known manipulators that are balanced with additional ele-
ments [106, 107, 9]. Since it has only counter-masses about the fixed pivots it is a
low inertia solution.

It was shown that inherently balanced mechanisms can be obtained by combining
principal vector linkage architectures. For example in Fig. 7.3 the DUAL-V manipu-
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lator was synthesized by combining two pantographs. This can be regarded a kind of
leg-by-leg approach, comparable with the approach in chapter 2 where in this case
the DUAL-V is considered with two 3-DoF legs. The difference of combining prin-
cipal vector linkages as legs is that a leg is not selected to be balanced afterwards
with additional elements. By summing the angular momentum of each leg, moment
balance is investigated of all legs together.

An inherently dynamically balanced mechanism was defined in chapter 1 as a
mechanism where all elements contribute to the motion and to the dynamic balance.
The balanced linkage architectures such as in Fig. 5.7 however are overconstrained
and have more elements than required for its motion. Technically, these architectures
then are not inherently balanced. However when for synthesis elements are elimi-
nated, inherently balanced mechanisms are derived that are normally constrained.
Since the DUAL-V manipulator has 3-DoF motion of the platform and it has four
legs, its inherent balance can be questioned. With the condition number in chapter 8,
however, it was shown that the fourth leg is not only advantageous for dynamic bal-
ance, but also for the motion of the manipulator because of its influence on the
workspace. The DUAL-V manipulator therefore can be considered inherently bal-
anced.

With a prototype of a planar 3-DoF inherently dynamically balanced parallel ma-
nipulator in chapter 8, for the first time a high-speed dynamically balanced multi-
degree-of-freedom parallel manipulator was designed, built, and tested. It success-
fully performed motions up to 180 m/s2. By evaluation and comparison with the
unbalanced 3-DoF parallel manipulator, experiments and simulations showed that
the balanced manipulator has up to 97% lower shaking forces, up to a 96% lower
shaking moment, and about 71% lower bearing forces. The actuator torques of the
balanced manipulator however were about 1.6 times higher. To determine if incor-
porating a dynamically balanced manipulator in a machine system is beneficial, also
the circumstances such as its influence on the costs and performance of other equip-
ment are important. To know if the costs per product can be reduced with dynamic
balance, it is required to develop and investigate a conceptual design of the complete
machine together with a corresponding business plan.

With the DUAL-V it was shown that with dynamic balance the performance of
a manipulator can be improved. Similar results are likely for other balanced mecha-
nisms with counter-masses solely about fixed pivots, since this leads to low bearing
forces and to low inertia addition. For instance when the elements of the delta robot
in Fig. 2.10 would all be parallel, which is when all links of the arms have equal
length and the size of the platform is equal to the base, then it can be force bal-
anced with solely counter-masses about the pivots with the base. The result can
be regarded a spatial version of one side of the DUAL-V. Since for the DUAL-V
both sides are needed for moment balance, a copy of this delta robot can be placed
oppositely to obtain moment balance. In practice however, this solution will pre-
vent the delta robot to do its common tasks. It is also possible to moment balance
a force-balanced delta robot with three additional counter-inertias on the base that
are driven with three additional actuators [99, 95]. Then the shaking moments of
all elements are balanced together actively, which is a low inertia solution. How the
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results of dynamic balance apply to parallel manipulators with prismatic joints was
not investigated.

In chapter 4 a method was found where a mass equivalent model of an element
in planar motion is obtained with one virtual and two real equivalent masses. With
these equivalent masses it was shown that closed kinematic chains can be modeled
and analyzed for force balance as open kinematic chains. This model was not found
applicable for analysis of the moment balance of closed kinematic chains. Therefore
a new inertia equivalent model needs to be found.

A set of one virtual and two real equivalent masses showed to represent planar
rotational motion of an element. Since a single equivalent mass - which equals the
total mass of an element - can represent the translational motion of an element,
no other equivalent masses are needed to model this motion. This holds also for
spatial translational motion where a single equivalent mass is sufficient. How a mass
equivalent model of an element for spatial rotational motion can be designed was
not investigated. Because of the three rotational motions it can be hypothesized that
such a model requires three virtual equivalent masses together with the two real
equivalent masses in the joints of the considered loop.

It will be interesting to investigate the application of the mass equivalent model
not only for the purpose of dynamic balance but also for multi-body dynamics in
general, which may lead to new insights in dynamic modeling. Also the principal
vector method may be considered again for dynamic analysis. It was shown in this
work how the principal vectors can be applied to describe the linear and angular
momentum of the motion of masses and inertias relatively to their common CoM.
Fischer has shown how with the principal vector method the lagrange equations of
motion can be derived [53]. His objective was to derive the acting forces and mo-
ments on and in a multi-body system that cause its motion. Maybe with principal
vectors efficient algorithms can be designed to monitor the internal forces and mo-
ment in elements, or to detect and locate clearance and wear in a system. These are
topics that need further investigation.

The main goal of this work was to show how to design dynamically balanced
mechanisms that encourage them to be applied. Although in general the focus in
machine design is on the reduction of mass, it was shown that for dynamic balance
a focus on the location of mass is also important. In fact, machine design involves
the reduction of mass where it is disadvantageous and the addition of mass where it
is advantageous. When this is achieved in a well-balanced way, new opportunities
are ahead. Figure 9.1 shows the prospect of the vertical factory. Since dynamically
balanced devices do not interact with the environment, no vibrations are exerted to
e.g. the floor and the wall, they can be placed easily at any location in any orientation
in buildings with multiple levels. Since for end-effectors of cable-driven manipula-
tors dynamic balance is of particular importance, it is also shown how a dynamically
balanced manipulator can be applied as a cable-driven manipulator end-effector for
a large workspace throughout the factory.
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Fig. 9.1 Prospect of the vertical factory where dynamically balanced devices such as manipulators
can be placed at any location in any orientation in buildings with multiple levels and can be applied
as end-effector in cable-driven manipulators for a large workspace throughout the factory.





Chapter 10
Conclusion

Two methods for the synthesis of inherently dynamically balanced mechanisms have
been proposed which consider dynamic balance prior to the kinematic synthesis. In-
stead of adding mass and inertia to a given mechanism with additional elements
as with common dynamic balancing methods, with these methods the mechanism
elements are considered for both the motion and the dynamic balance. With the
method of linearly independent linear momentum inherently force-balanced mecha-
nisms are derived from given kinematic architectures by adapting the geometric and
mass parameters. With the method of principal vector linkages inherently dynami-
cally balanced mechanisms are derived from principal vector linkage architectures
that have solely the essential geometric conditions for force balance.

It was shown that inherently balanced mechanism solutions for desired tasks and
functions can be synthesized from principal vector linkage architectures by various
methods, including changing the parameters of the elements, eliminating elements,
reduction of degrees-of-freedom, introducing gears and sliders, and by combining
them. To obtain inherent moment balance, the degrees-of-freedom of a principal
vector linkage architecture are reduced such that the moment balance conditions
hold, for instance by introducing slider elements.

New multi-degree-of-freedom kinematic solutions have been found that would
not have been obtained if dynamic balance would have been considered after
the kinematic synthesis. A planar 2-DoF inherently dynamically balanced grasper
mechanism was synthesized from a 4-DoF principal vector linkage consisting of 6
parallelograms and 2 slider elements and a planar 3-DoF inherently dynamically
balanced parallel manipulator was synthesized from two 2-DoF principal vector
linkages consisting of parallel links of equal lengths and counter-masses solely
about pivots with the base. Also the potential for large moving structures was in-
vestigated by synthesis of a dynamically balanced movable bridge and of a force-
balanced movable building from 2-DoF principal vector linkages.

A prototype of a planar 3-DoF inherently dynamically balanced parallel manipu-
lator in an experimental setup was presented for evaluation and comparison with
the unbalanced 3-DoF parallel manipulator. The prototype manipulator successfully
performed high-speed motion up to 180 m/s2 and showed that with dynamic balance

227



228 10 Conclusion

the performance of the manipulator can be improved. Experiments and simulations
showed that the balanced manipulator has up to 97% lower shaking forces, up to a
96% lower shaking moment, and about 71% lower bearing forces as compared to
the unbalanced manipulator at the price of about 1.6 times higher actuator torques.

A method was found by which the loop closure relations of general planar closed
kinematic chains can be considered implicitly. Therefore the mass of an element
with general CoM is modeled with one virtual equivalent mass and two real equiva-
lent masses. A closed kinematic chain then is analyzed by including these equivalent
masses in the analysis of the open kinematic chain without the modeled element.
This method was applied for analysis and for deriving the force balance conditions
of closed principal vector linkage architectures with 1 and with 3 closed loops.



Appendix A
The work of Otto Fischer and the historical
development of his method of principal vectors
for mechanism and machine science

Abstract This article gives an overview of the distinctive work of Otto Fischer
(1861-1916) on the motion of the human musculoskeletal system. In order to de-
rive the individual muscle forces for human in motion, he invented the method of
principal vectors to describe the motion of the centers-of-mass and the inertias of
body segments. This method has proven to be successful, not only for the studies on
biomechanics but in particular also for mechanism and machine science. A histori-
cal development of the application of the method is presented for today’s potential.

A.1 Introduction

With time the amount of knowledge increases at a rapid pace. For research it is
a challenge to both remain up-to-date and to not forget the past. Particularly this
is a challenge when old research results and ideas lose interest for a certain time,
for decades or for ages. To retrieve the results, and more importantly to retrieve
the philosophy with which they were obtained, often investigation of the original
sources is needed. Citations of old literature in current articles often tend to become
rather ’automatic’ or indirect, e.g. because of language differences or unavailability,
and therefore do not reveal the essence and the potential of the original sources. This
however is necessary to discover the value old methods may have for contemporary
research goals.

With this perspective, the work of the physiologist, physicist, and medical doc-
tor (Physiologe, Physiker, Arzt) Otto Fischer1 is summarized and the philosophy
and application of his method of principal vectors is investigated. In addition to his
still relevant results on the mechanical properties of the human musculoskeletal sys-
tem and of his investigation of the human gait, this method has been essential for
studying the individual muscle forces for human motion in the pre-computer era. Al-
though invented for biomechanics, Fischer emphasized the potential of his method

1 *26-04-1861 Altenburg (Thüringen), Germany †16-12-1916 Leipzig, Germany
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for mechanism and machine science, which was taken over by various researchers.
This article includes a historical development of his method in mechanism and ma-
chine science to illustrate its current potential.

A.2 Otto Fischer and his works

[2][3][1] Otto Fischer studied mathematics and physics at the German universities
of Jena, München, and Leipzig and obtained his PhD-degree (Dr. phil.) in mathe-
matics from the University of Leipzig in 1885, supervised by Prof. Felix Klein. In
1887 he became teacher of mathematics and physics at the business school (Han-
delslehranstalt) of Leipzig. He continued as a teacher at the Petri-Realgymnasium
in Leipzig in 1895, where he would teach until the end of his life, from 1912 onward
at the position of rector.

At the same time Fischer worked on medical and biological research together
with the anatomist Prof. Christian Wilhelm Braune at the Anatomic institute of the
University of Leipzig. In 1893 he obtained his habilitation on physiological physics
(Physiologische Physik) at the University of Leipzig and became teacher at this
topic at the Faculty of Philosophy. In 1896 he became Professor extraordinarius on
medical physics (Medizinische Physik) at the Medical Faculty of the University of
Leipzig where he remained until his early death in 1916.

Together with Braune, Fischer was pioneering the research on biomechanics of
the human musculoskeletal system in motion. While anatomists at that time investi-
gated the mechanics of the human body empirically, he understood the necessity of
theoretical investigation. He stated that only with an accurate kinematic model of the
human skeletal system the functioning of human motion and of the muscles could
be investigated to achieve full understanding. Being a mathematician, he stressed
in probably his first publication in 1885 that a mathematical method was needed to
gain exact and reliable results in human kinematics [16].

The investigation in [16] consists of three-dimensional measurements of the mo-
tion of the forearm. At three non-collinear points at the bone wooden needles were
attached. The motions of the tips of the needles were recorded by drawing their
projections on millimeter-paper and by recording the distance from the needle to
the plane of the paper. With these measurements he became the first to make three-
dimensional motion analysis of human. A mathematical description of the measured
motions was derived by screw motion, for which he determined the screw-axes of
each body segment. Based on the motion of the screw-axes the real motion could be
interpreted accurately.

His results led to important corrections on the results from purely two-dimensional
empirical analysis by others. For example in 1887 he reexamined the motion of the
elbow and the hand with a ’rigorous mathematical analysis’ gaining new insight at
a topic that had been considered known [18].

In [17] Fischer considered the importance of measurements on the living hand
as compared to a cadaver hand, because of the significant influence muscles have
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on the real motion capabilities in addition to the joint geometry. To measure the
motions, he placed metal tubes around the finger to which the wooden needles and
steel wires for measuring were attached. In 1888 he started analyzing the combined
motion of multiple body segments by considering the shoulder with the humerus
[19] and in 1889 the functioning of the flexor muscles of the elbow was investigated
[20].

For the first time in 1889, Fischer considered the motion of the center of mass
(CoM) of the complete human body [21]. As compared to statics and mechanics of
the human body at a certain pose, which can be analyzed from individual body seg-
ments, he stated that for deriving the muscle forces for certain human motion knowl-
edge is needed about the motion of the body CoM. One argument was that while
each body segment has various possible motions, the body CoM always moves in a
very specific manner. Fischer and Braune determined the positions of the CoM of
human bodies and of parts of human bodies by using rigidly frozen cadavers. They
verified their results with the results of anatomists for individual body segments
and presented them as ratios or coefficients in order to account for differences of
individuals. Their results remained important well into the computer era [111, 86].

In 1891 advanced kinematic measurements and analysis of the knee joint were
published [22] followed in 1892 by measurements of the inertia values of body
segments [23].

One year after the death of Braune, Fischer published in 1893 his habilitation
work on determining the muscle forces for human motion [42]. He noted that the
human body had become a mechanically known object. At anatomic level the prop-
erties of each body segment were well known and at kinematic level the relative
motion of the body segments had become well known too. With the rich knowledge
on the functioning of individual muscles at an anatomic level, the next new step had
to be the investigation of the combined muscle forces that cause human motion. He
distinguished human motion by the absolute motion of the body CoM and by the
relative motion of the body segments with respect to the body CoM. For the anal-
ysis of the relative motions and to derive muscle forces he invented ’The method
to derive kinetic energy’ (’Die Methode der Ableitung der lebendigen Kraft’), of
which a part would be named later ’The method of principal vectors’ [74]. With this
method, Fischer investigated the muscle forces of the lower arm in 1895 [43] and
he made other contributions to the statics and dynamics of muscles in 1896 [44] and
1897 [45].

From 1895 to 1904 Fischer published a series of six works on human gait (Der
Gang des Menschen). The first part consists of the measurements of the motion of
unloaded and loaded humans within a spatial co-ordinate system with high accuracy
[24]. The results of these measurements were used for analysis in the following five
parts for which Otto Fischer is said to be the first to conduct three-dimensional gait
analysis [12]. In part two in 1899 the precise motion of the body CoM based on
the CoM of individual body segments is investigated in relation with the external
forces that apply [46]. In part three in 1900 the lower extremities are investigated
[47], while part four in 1901 treats the forces and moments in the foot [48]. In both
part five in 1903 [50] and part six in 1904 [51] the motion of the upper-leg is treated
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with which he became the first to give the exact proof that for walking the upper-leg
does not solely swing forward as a passive pendulum.

In 1902 Fischer studied the influence of muscles on one another to stress, again,
the importance of considering the motion of the complete human musculoskeletal
system in order to investigate the functioning of the individual muscles [49]. In 1905
he extended his method of principal vectors to derive the spatial equations of motion
of spatial chains [52].

In 1906 Fischer published his book ’Theoretical fundamentals for mechanics
of moving bodies’ (’Theoretische Grundlagen für eine Mechanik der lebenden
Körper’) [53]. In the first part of what would become a classical work [2] all of
his achievements on the method of principal vectors are presented and developed
from the very beginning. The second part summarizes his investigations on human
motion to which the method had been applied. The book ends by illustrating the
potentials of his method for mechanism and machine science.

Fischer published also a book on descriptions of human joints from a rather kine-
matical point of view instead of from the common anatomical point of view in 1907
[54]. In 1909 he published a work on spherical kinematics of Listing’s law (das
Listinsche Gesetz) [56] and of the humeroradial joint [55].

Most of the cited publications of Otto Fischer were published in the proceedings
of the Mathematisch-Physikalischen Classe der Königlich-Sächsischen Gesellschaft
der Wissenschaften in Leipzig of which he was extraordinary member since 1893
and ordinary member as of 1905. All cited literature is freely accessible on the
internet in the DMG-library2 or in the SLUB-library of Dresden 3.

A.3 The method of principal vectors

To derive individual muscle forces for a human in motion, the motion of all body
segments needs to be considered. For instance the motion of the elbow affects the
forces at the shoulder or motion of the arm may affect to forces in the leg. However,
calculations with the inverse dynamic model of the human at each instant are cum-
bersome to do by hand. Therefore Fischer developed a method that is capable of
reducing the mechanics of the human mechanism to solely the element of interest,
e.g. the elbow, knee, or foot. From the resulting reduced mass and inertia model the
equations for the kinetic energy and the equations of motion could be derived.

The essential choice Fischer made was to investigate the motion of the body
CoM independently from the relative motions of the body segments with respect
to the body CoM. Since the motion of the body CoM is determined by external
forces while the relative motion of body segments is determined by internal (muscle)
forces, then also these can be investigated independently. The relative motion of the
body segments about the body CoM is determined from the kinematics for which the

2 http://dmglib.org/dmglib/handler?biogr=34004 (April 2014)
3 www.digital.slub-dresden.de/en/digital-collections (April 2014)
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dynamic model can be reduced. It is exactly this reduction step which is named the
method of principal vectors, which is part of Fischer’s complete ’method to derive
kinetic energy’ [42].

a) b)

Fig. A.1 Derivation of the principal points Hi that define the principal dimensions of a linkage of
three elements with their CoM at Si. The linkage CoM S0 then is found geometrically [53].

Fischer explained his method for the linkage of three elements shown in Fig. A.1.
The elements are linked with revolute pairs at G1,2 and G2,3 and each element has
a mass mi centered at position Si. It is possible to define principal points Hi at each
element. At element 1 principal point H1 is defined as being the CoM of mass m1
at S1 and mass m2 +m3 at joint G1,2. This is a projection of the mass of elements 2
and 3 at element 1. Equivalently, at element 3 principal point H3 is defined as being
the CoM of mass m3 at S3 and mass m1 +m2 at joint G2,3. At element 2 principal
point H2 if defined as being the CoM of m2 at S2, m1 at G1,2, and m3 at G2,3.

With the principal points, lengths H1G1,2 = d1, H2G2,3 = d2, G1,2H2 = c2, and
H3G2,3 = c3, are determined which are the principal dimensions of the linkage. With
these lengths the CoM of all three links S0 can be geometrically found by parallelo-
grams as indicated in Fig. A.1a. Since the principal dimensions are independent of
the motion of the linkage, these parallelograms trace the linkage CoM for all mo-
tion of the links. With respect to a fixed reference frame, the vectors describing the
principal dimensions are named the principal vectors.

The geometric result of Fig. A.1 can be seen as a linkage as shown in Fig. A.2.
Assuming the linkage CoM S0 to be stationary, the position of the linkage is com-
pletely defined with the rotation of each element φi and its motion by their deriva-
tives. Then for φ̇2 = φ̇3 = 0 element 1 rotates about H1 while elements 2 and 3 solely
translate. The inertia of this motion is the reduced inertia of the mechanism with re-
spect to element 1. For each of the three elements this can be done with which the
motion of the linkage consists of three reduced subsystems. For φ̇1 = φ̇2 = 0 ele-
ment 3 rotates about H3 while elements 1 and 2 solely translate and for φ̇1 = φ̇3 = 0
element 2 rotates about H2 while elements 1 and 3 solely translate.



234 A - Historical development of Otto Fischer’s method of principal vectors

Fig. A.2 Mechanism by Fischer to trace the CoM of three links at S0 by additional links [53].

Based on these subsystems Fischer was able to formulate the kinetic energy
equation of the motion of the complete linkage to depend solely on the total mass
m0 = m1 +m2 +m3, the three reduced inertias ki, and the principal lengths. The
kinetic energy of the linkage relative to the linkage CoM then is written as

Tr =
m0

2
(k2

1φ̇2
1 + k2

2φ̇2
2 + k2

3φ̇2
3 )+m0d1c2 cos(φ1 −φ2)φ̇1φ̇2 +

m0d1c3 cos(φ1 −φ3)φ̇1φ̇3 +m0d2c3 cos(φ2 −φ3)φ̇2φ̇3 (A.1)

Including also the kinetic energy of the motion of the linkage CoM, which depends
on m0 and on the velocity of the CoM ẋ0 and ẏ0, results in the equation of the kinetic
energy for both relative and absolute motion of the linkage

T =
m0

2
(ẋ2

0 + ẏ2
0 + k2

1φ̇2
1 + k2

2φ̇2
2 + k2

3φ̇2
3 )+m0d1c2 cos(φ1 −φ2)φ̇1φ̇2 +

m0d1c3 cos(φ1 −φ3)φ̇1φ̇3 +m0d2c3 cos(φ2 −φ3)φ̇2φ̇3 (A.2)

Deriving the equations of motion with Lagrange then results in five differential
equations, two for the motion of the linkage CoM and three for the motion of the
links with respect to the linkage CoM. The force components of the first two equa-
tions correspond with the external forces applied to the linkage CoM. The force
components of the latter three equations correspond to the resultant moment on each
link about the principal point Hi. These components are the resultants of all internal
and external forces applied at the linkage that apply to an individual element from
which the muscle forces can be derived at anatomic level.
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a) b)

Fig. A.3 Fischer’s method applied to (a) the right arm, (b) the right arm holding a mass [53].

A.4 Applications by Otto Fischer

Fischer applied his method to investigate the muscle activity of various parts of the
human body. Figure A.3 shows the method applied to the right arm. In this case the
forces in the shoulder and elbow were considered with the trunk being stationary
and the hand being rigidly attached to the lower arm. In Fig. A.3a the position of the
CoM of the arm with hand is S8,10. Figure A.3b shows the same arm but with the
hand holding a mass for which the principal points are located closer to the hand.

a) b)

Fig. A.4 Investigation of (a) forces in the leg [53] and (b) the swing phase of the leg [50, 51].

Equivalently, Fig. A.4a shows the method applied to a leg, assuming the trunk to
be stationary and the foot to be rigidly attached to the lower leg. Figure A.4b shows
the upper leg for the investigation of the forward swing of a leg during walking.
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Here the motion of the complete human was considered as being reduced to the
motion of the leg. The reduced system was regarded as a linkage of three elements
with the lower leg with rigidly attached foot being element 1, the upper leg being
element 2, and the upper body being element 3 as compared to Fig. A.1.

a) b)

Fig. A.5 Investigation of (a) the foot [48] and (b) the shaking force balancing of a crank-slider
mechanism [53].

Fischer also studied the forces and moments in the foot during walking. Fig-
ure A.5a shows the foot in contact with the ground just before making a step [48].
In [53] Fischer illustrates the potential use of his method for machines and mecha-
nisms by applying it to a crank-slider mechanism as shown in Fig A.5b. He inves-
tigated the shaking forces, i.e. the resulting dynamic forces at the base, and derived
the conditions for which they become zero and the mechanism is shaking force bal-
anced. In [53] he also shows the benefit of his method for deriving the equations of
motion with a pendulum used as example. From the reduced system the equations
of motions are readily obtained, ’without the need of taking the indirect route by
the kinetic energy and the general Lagrange differential equations of motion’, with
which he concludes his book.

Fischer developed his method in [52] for more complex linkages such as a link-
age with six elements in series and a linkage with twenty elements. Also he showed
that his method applies to spatial mechanisms for which he investigated a linkage
of two elements with spatial motion. It is likely that Fischer planned to apply his
method for the investigation of spatial joints. Therefore he investigated the spher-
ical kinematics of Listing’s law [56] and of the humeroradial joint [55] of which
Fig. A.6 shows a mechanism model and an illustration.

A.5 Development and application by other researchers

The method of principal vectors is described and applied by various authors.
Nerreter in 1912 used the method for an extensive investigation of the shaking forces
of a four-cylinder motor [79]. Wittenbauer in 1923 developed the method for inves-
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a) b)

Fig. A.6 (a) Spherical mechanism model of the kinematics of Listing’s Law [56], (b) Study of the
relative motion of the radius at the humeroradial joint [55].

a) b)

Fig. A.7 (a) Application of the method by Wittenbauer for an arbitrary mass distribution of each
of the three links [104]. (b) Illustration by Kreutzinger to show that the trajectory of the CoM of a
4R four-bar linkage is similar to a coupler curve of this linkage [69].

tigating the motion of the linkage CoM and applied it to more complex mechanisms
among which a parallel linkage [104]. He also applied the method to the linkage
with three elements of Fig. A.2, but with each element having an arbitrary CoM
location as shown in Fig. A.7a. Summaries of the method have been presented by,
among others, Beyer in 1931 and 1960 [14, 15], Federhofer in 1932 [41], and Rao
and Dukkipati in 1989 [84]. Among others, Wittenburg identified the concept of
principal vectors in multi-body dynamic equations by applying concepts of graph
theory, referring to the principal point as a Barycenter [105].

Kreutzinger in 1942 applied the method of principal vectors to show that the
trajectory of the CoM of a 4R four-bar linkage is a curve similar to a coupler curve
of this linkage [69]. His solution is illustrated in Fig. A.7b.
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a) b)

Fig. A.8 Alternative geometric solutions by principal vectors to trace the CoM (a) by Artobolevskii
and (b) by the double contour transformation on a six-bar linkage by Shchepetil’nikov [87].

For the purpose of dynamic balancing, Shchepetil’nikov in 1957 extended the
method of principal vectors to the method of double contour transformation [87].
He based his research on the findings of Artobolevskii in 1951 [10] who had pro-
posed an alternative geometric solution to trace the CoM with principal dimensions,
shown in Fig. A.8a. Since for mechanisms with multiple closed chains the geometric
solution by parallelograms quickly leads to excessive bulkiness, Shchepetil’nikov
showed how the CoM can be traced by similar auxiliary linkages being jointed to
the original linkage. One example of the application to a six-bar linkage is shown in
Fig. A.8b. His approach towards balancing was to have the linkage CoM move along
a circular trajectory with a rotation synchronous to the the driving crank. Then with
a single counter-mass moving along with the driving crank the mechanism could
be force balanced. By placing the counter-mass at an additional link elsewhere at
the base, also the first harmonic of the shaking moment could be balanced. Having
applied his method solely to linkages with mass symmetric links, he extended his
method in 1975 to linkages with general mass distributions [88].

Hilpert in 1965 considered the balancing of a 4R four-bar linkage for which he
used Fischer’s geometrical solution together with a pantograph with counter-mass
to bring the linkage CoM at a stationary position with respect to the base as shown
in Fig. A.9a [61].

When the geometric solution to trace the CoM becomes a real linkage as in
Fig. A.9a, the masses of the auxiliary links have to be considered too. Agrawal et
al. in 2001 showed by experiments that the mass of the auxiliary links of Fischer’s
original linkage of Fig. A.2 can be included for which this linkage traces the CoM of
all links together [5]. Then by having the CoM be stationary with the base results in
a balanced manipulator as shown in Fig. A.10a. In 2004 Agrawal and Fattah showed
that also for a spatial manipulator the mass of all links can be included, of which
a prototype is shown in Fig. A.10b [4]. In this case the linkage CoM was statically
balanced by a spring.
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Fig. A.9 (a) Hilpert’s solution to balance the CoM of a 4R four-bar linkage by a pantograph with
counter-mass [61].

a) b)

Fig. A.10 Applications by (a) Agrawal et al. to include the mass of all links and [5] (b) by Agrawal
and Fattah to derive a statically balanced spatial manipulator [4].

A.6 Conclusion

An overview of the work of Otto Fischer was presented showing his contributions
to three-dimensional human gait analysis and in particular the investigation of mus-
cle forces for human motion. His method of principal vectors was summarized and
a selection of Fischer’s applications of the method were shown. The historical de-
velopment of the method for mechanism and machine science was investigated,
showing a clear focus on the motion of the center of mass of mechanisms for the
purpose of static and dynamic balancing.
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Summary

Methodology for analysis and synthesis of inherently force and
moment-balanced mechanisms

When mechanisms or machines move at high speeds, the dynamic reaction forces
and moments that are produced at the base are a significant cause of undesired vi-
brations which impairs the behavior, including the accuracy and cycle time of the
machine. When a mechanism is designed dynamically balanced, then the total of the
dynamic reaction forces (the shaking forces) and the total of the dynamic reaction
moments (the shaking moments) on the base are zero for all motion. As a result, the
cause of the vibrations is eliminated and the base remains still. This is also advanta-
geous for robotic end-effectors which for all dynamically balanced end-effector mo-
tion do not perturb their manipulator. A mechanism that is shaking force balanced is
also statically balanced. This means that its motion is not affected by gravity. Then
it remains stationary in any position which is advantageous for realizing safe and
energy efficient large motion of objects such as in movable architecture.

The design of dynamically balanced mechanisms, in particular dynamically bal-
anced multi-degree-of-freedom mechanisms, however is a challenge since common
methods for balancing hardly result in advantageous solutions due to excessive
mass, inertia, and complexity addition. One of the reasons for this is that dynamic
balancing is considered after the kinematic synthesis of a mechanism. Then it is
likely that an element that is added for balancing does not improve but worsen the
performance of a mechanism. Another reason is that current balancing methods do
not consider the loop closure relations of closed-chain mechanisms which limits the
solutions that can be found. Therefore the aim of this work has been to develop a
methodology that considers dynamic balance as a design principle in the synthesis
of multi-degree-of-freedom mechanisms and to find mechanisms where all elements
contribute to the motion as well as to the dynamic balance. Such a mechanism was
named an inherently dynamically balanced mechanism. This work was aimed also
at showing the application potential of the results.

Two methods for the synthesis of inherently dynamically balanced mechanisms
were proposed which consider dynamic balance prior to the kinematic synthe-
sis. With the method of linearly independent linear momentum inherently force-
balanced mechanisms are derived from given kinematic architectures by adapting
the geometric and mass parameters in the linear momentum equations. After sub-
stituting the derivative of the loop equations in the linear momentum equations, the
linear momentum equations can be written in linearly independent terms from which
mechanism configurations can be derived with advantageous balance solutions.

Based on a theory of over 120 years old, general mechanism architectures were
developed that are inherently force balanced with solely the essential kinematic con-
ditions for balance. These were named principal vector linkages. By combining
and generalizing multiple related theories from literature, extended principal vector
linkage architectures were developed. It was shown that from these architectures

247



248 Summary

inherently dynamically balanced mechanism solutions for desired tasks and func-
tions can be synthesized by various methods, including changing the parameters of
elements, eliminating elements, reduction of degrees-of-freedom, introducing gears
and sliders, and by combining them. It was also shown that to obtain inherent mo-
ment balance, the degrees-of-freedom of a principal vector linkage architecture can
be reduced such that the moment balance conditions hold, for instance by introduc-
ing slider elements.

New multi-degree-of-freedom balanced kinematic mechanism solutions were
found that would not have been obtained if dynamic balance would have been con-
sidered after the kinematic synthesis. A planar 2-DoF inherently dynamically bal-
anced grasper mechanism was synthesized from a 4-DoF principal vector linkage
and a planar 3-DoF inherently dynamically balanced parallel manipulator was syn-
thesized from two 2-DoF principal vector linkages. Examples of balanced movable
architecture were shown by the design of a new balanced bascule bridge and a build-
ing that can open and close by moving its roof and walls.

A prototype of a planar 3-DoF inherently dynamically balanced parallel manipu-
lator in an experimental setup was presented for evaluation and comparison with the
unbalanced 3-DoF parallel manipulator. The prototype manipulator performed suc-
cessfully high-speed motion up to accelerations of 180 m/s2 and showed that with
dynamic balance the performance of the manipulator can be improved. Experiments
and simulations showed that the balanced manipulator has up to 97% lower shaking
forces, up to a 96% lower shaking moment, and about 71% lower bearing forces
as compared to the unbalanced manipulator at the price of about 1.6 times higher
actuator torques.

A method was found by which the loop closure relations of general planar closed
kinematic chains can be considered implicitly. Therefore the mass of an element
with general center-of-mass is modeled with one virtual equivalent mass and two
real equivalent masses. A closed kinematic chain then is analyzed by including these
equivalent masses in the analysis of the open kinematic chain without the modeled
element. This method was applied for analysis and for deriving the force balance
conditions of closed principal vector linkage architectures with 1 and with 3 closed
loops.



Samenvatting

Methodologie voor analyse en synthese van inherente kracht- en
momentgebalanceerde mechanismen

Wanneer mechanismen of machines snel bewegen, dan zijn de dynamische reac-
tiekrachten en -momenten op de basis van de machine een significante bron van
ongewenste trillingen die onder andere de nauwkeurigheid en de omlooptijd van
een machine benadelen. Als een mechanisme dynamisch gebalanceerd is ontwor-
pen, dan is de som van de reactiekrachten (de schudkrachten) en de som van de
reactiemomenten (de schudmomenten) op de basis voor alle bewegingen gelijk aan
nul, waardoor de bron van de trillingen is weggenomen en de basis stil blijft. Dit
is ook voordelig voor eindpunteffectoren zoals grijpers die, indien dynamisch geba-
lanceerd, voor willekeurige bewegingen hun manipulator niet verstoren. Een dy-
namisch krachtgebalanceerd mechanisme is ook statisch gebalanceerd. Dit betekent
dat de beweging ervan niet beı̈nvloed wordt door de gravitatiekracht. Het mecha-
nisme blijft dan bijvoorbeeld in iedere positie vanzelf stilstaan. Dit is gunstig voor
het realiseren van veilige en energievriendelijke grote bewegingen van objecten
zoals in de bewegende architectuur.

Het ontwerpen van dynamisch gebalanceerde mechanismen, in het bijzonder
van dynamisch gebalanceerde mechanismen met meerdere vrijheidsgraden, is een
uitdaging omdat met bestaande methoden voor balanceren vrijwel geen gunstige
oplossingen worden gevonden doordat te veel massa, traagheid en complexiteit
moet worden toegevoegd. Eén van de oorzaken is dat dynamische balans pas na de
kinematische synthese van het mechanisme wordt beschouwd. Dan is het voor de
hand liggend dat een toegevoegd element voor balans het mechanisme niet verbetert
maar juist verslechtert. Een andere oorzaak is dat bestaande methoden geen gebruik
maken van het verband van een gesloten keten, waardoor het vinden van oplossin-
gen beperkt wordt. Daarom is het doel van dit werk geweest een methodologie te
ontwikkelen waarbij dynamische balans een ontwerpprincipe is in de synthese van
mechanismen met meerdere vrijheidsgraden en waarin alle elementen bijdragen aan
zowel de beweging als aan de dynamische balans. Zo’n mechanisme wordt in dit
werk een inherent dynamisch gebalanceerd mechanisme genoemd. Dit werk heeft
ook als doel gehad de potentie te tonen van toepassing van dynamische balans in de
praktijk.

Twee methoden voor de synthese van inherent dynamisch gebalanceerde me-
chanismen zijn voorgesteld waarbij dynamische balans wordt beschouwd vóór de
kinematische synthese. Met de methode van lineair onafhankelijke impuls worden
krachtgebalanceerde mechanismen afgeleid van een gegeven kinematische archi-
tectuur door het aanpassen van de geometrische en massa parameters in de im-
pulsvergelijkingen. Na substitutie van de afgeleide van de vergelijkingen van een
gesloten keten kunnen de impulsvergelijkingen in lineair onafhankelijke termen
worden geschreven waaruit configuraties van mechanismen met gunstige balans-
eigenschappen kunnen worden gevonden.
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Op basis van een meer dan 120 jaar oude theorie zijn algemene mechanisme-
architecturen ontwikkeld die inherent krachtgebalanceerd zijn met slechts de es-
sentiële kinematische voorwaarden voor balans. Deze hebben de naam hoofdvec-
tormechanismen gekregen. Door verschillende theoriën uit de literatuur te com-
bineren en te generaliseren zijn uitgebreide hoofdvectormechanisme-architecturen
ontwikkeld. Vanuit deze architecturen kunnen op verschillende manieren inherent
dynamisch gebalanceerde mechanismen voor gewenste taken en functies worden
ontworpen waaronder het aanpassen van de parameters van elementen, weglaten
van elementen, reduceren van vrijheidsgraden, invoeren van tandwieloverbrengin-
gen en schuifverbindingen, en door ze te combineren. Voor inherente momentbalans
kunnen de vrijheidsgraden van een hoofdvectormechanisme-architectuur worden
gereduceerd zodanig dat aan de voorwaarden voor momentbalans wordt voldaan,
bijvoorbeeld door het invoeren van schuifverbindingen.

Nieuwe kinematische oplossingen van gebalanceerde mechanismen met meerde-
re vrijheidsgraden zijn gevonden die niet zouden zijn gevonden als dynamische ba-
lans pas na de kinematische synthese zou zijn onderzocht. Een vlak inherent dy-
namisch gebalanceerd mechanisme met twee vrijheidsgraden was afgeleid van een
hoofdvectormechanisme met vier vrijheidsgraden en een vlak inherent dynamisch
gebalanceerde parallelle manipulator met drie vrijheidsgraden was ontworpen door
het combineren van twee hoofdvectormechanismen met elk twee vrijheidsgraden.
Voorbeelden van gebalanceerde bewegende architectuur zijn getoond waaronder een
nieuw ontwerp van een gebalanceerde bascule brug en een gebouw die kan worden
geopend door het dak en de muren op een neer te bewegen.

Een prototype van een vlak inherent dynamisch gebalanceerde parallelle mani-
pulator met drie vrijheidsgraden in een experimentele opstelling was gemaakt voor
een evaluatie en een vergelijking met de ongebalanceerde parallelle manipulator.
Dit prototype heeft met succes op hoge snelheid met versnellingen tot 180 m/s2

bewogen en heeft aangetoond dat met dynamische balans de prestatie van een ma-
nipulator kan worden verbeterd. Uit experimenten en simulaties is gebleken dat de
gebalanceerde manipulator tot 97% lagere schudkrachten, tot 96% lagere schudmo-
menten, en ongeveer 71% lagere lagerkrachten heeft in vergelijking met de onge-
balanceerde manipulator waarbij de aandrijfmomenten 1.6 maal hoger zijn.

Een methode was voorgesteld waarin de vergelijkingen van een vlakke gesloten
keten impliciet kunnen worden meegenomen in de analyse. Hierbij wordt de massa
van een element met een generieke massaverdeling gemodelleerd met één virtuele
equivalente massa en twee werkelijke equivalente massa’s. De analyse van een ge-
sloten keten bestaat dan uit de analyse van de open keten zonder het gemodelleerde
element waarin deze equivalente massa’s worden meegenomen. Met deze methode
waren de voorwaarden voor krachtbalans van gesloten hoofdvectormechanisme-
architecturen met één en met drie gesloten ketens afgeleid.
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